350 research outputs found

    Sculpting the Extra Dimensions: Inflation from Codimension-2 Brane Back-reaction

    Full text link
    We construct an inflationary model in 6D supergravity that is based on explicit time-dependent solutions to the full higher-dimensional field equations, back-reacting to the presence of a 4D inflaton rolling on a space-filling codimension-2 source brane. Fluxes in the bulk stabilize all moduli except the `breathing' modulus (that is generically present in higher-dimensional supergravities). Back-reaction to the inflaton roll causes the 4D Einstein-frame on-brane geometry to expand, a(t) ~ t^p, as well as exciting the breathing mode and causing the two off-brane dimensions to expand, r(t) ~ t^q. The model evades the general no-go theorems precluding 4D de Sitter solutions, since adjustments to the brane-localized inflaton potential allow the power p to be dialed to be arbitrarily large, with the 4D geometry becoming de Sitter in the limit p -> infinity (in which case q = 0). Slow-roll solutions give accelerated expansion with p large but finite, and q = 1/2. Because the extra dimensions expand during inflation, the present-day 6D gravity scale can be much smaller than it was when primordial fluctuations were generated - potentially allowing TeV gravity now to be consistent with the much higher gravity scale required at horizon-exit for observable primordial gravity waves. Because p >> q, the 4 on-brane dimensions expand more quickly than the 2 off-brane ones, providing a framework for understanding why the observed four dimensions are presently so much larger than the internal two. If uplifted to a 10D framework with 4 dimensions stabilized, the 6D evolution described here could describe how two of the six extra dimensions evolve to become much larger than the others, as a consequence of the enormous expansion of the 4 large dimensions we can see.Comment: 27 pages + appendices, 2 figure

    3-Form Flux Compactification of Salam-Sezgin Supergravity

    Full text link
    The compactification of 6 dimensional Salam-Sezgin model in the presence of 3-form flux H is investigated. We find a torus topology for this compactification with two cusps which are the places of branes, while at the limit of large size L of the compact direction we also obtain sphere topology. This resembles the Randall-Sundrum I,II model. The branes at one of the cusps can be chosen to be 3- and 4-branes which fill our 4-dimensional space together with the fact that H=0 at this position restores the Lorentz symmetry. This compactification also provides an example for the so-called `time warp' solution, [0812.5107 [hep-th]]. According to a no-go theorem in d6d\ne 6, the time warp compactification violates the null energy condition. While the theorem is quiet for d=6, our model gives a time warp compactification which satisfies the null energy condition. We also derive the four dimensional effective Planck mass which is not obvious due to the time warp nature of the solution.Comment: 19 pages, 5 fig

    Dielectric (p,q) Strings in a Throat

    Get PDF
    We calculate the (p,q) string spectrum in a warped deformed conifold using the dielectric brane method. The spectrum is shown to have the same functional form as in the dual picture of a wrapped D3-brane with electric and magnetic fluxes on its world volume. The agreement is exact in the limit where q is large. We also calculate the dielectric spectrum in the S-dual picture. The spectrum in the S-dual picture has the same form as in the original picture but it is not exactly S-dual invariant due to an interchange of Casimirs of the non-Abelian gauge symmetries. We argue that in order to restore S-duality invariance the non-Abelian brane action should be refined, probably by a better prescription for the non-Abelian trace operation

    Inflation in Realistic D-Brane Models

    Full text link
    We find successful models of D-brane/anti-brane inflation within a string context. We work within the GKP-KKLT class of type IIB string vacua for which many moduli are stabilized through fluxes, as recently modified to include `realistic' orbifold sectors containing standard-model type particles. We allow all moduli to roll when searching for inflationary solutions and find that inflation is not generic inasmuch as special choices must be made for the parameters describing the vacuum. But given these choices inflation can occur for a reasonably wide range of initial conditions for the brane and antibrane. We find that D-terms associated with the orbifold blowing-up modes play an important role in the inflationary dynamics. Since the models contain a standard-model-like sector after inflation, they open up the possibility of addressing reheating issues. We calculate predictions for the CMB temperature fluctuations and find that these can be consistent with observations, but are generically not deep within the scale-invariant regime and so can allow appreciable values for dns/dlnkdn_s/d\ln k as well as predicting a potentially observable gravity-wave signal. It is also possible to generate some admixture of isocurvature fluctuations.Comment: 39 pages, 21 figures; added references; identified parameters combining successful inflation with strong warping, as needed for consistency of the approximation

    Dirac Born Infeld (DBI) Cosmic Strings

    Get PDF
    Motivated by brane physics, we consider the non-linear Dirac-Born-Infeld (DBI) extension of the Abelian-Higgs model and study the corresponding cosmic string configurations. The model is defined by a potential term, assumed to be of the mexican hat form, and a DBI action for the kinetic terms. We show that it is a continuous deformation of the Abelian-Higgs model, with a single deformation parameter depending on a dimensionless combination of the scalar coupling constant, the vacuum expectation value of the scalar field at infinity, and the brane tension. By means of numerical calculations, we investigate the profiles of the corresponding DBI-cosmic strings and prove that they have a core which is narrower than that of Abelian-Higgs strings. We also show that the corresponding action is smaller than in the standard case suggesting that their formation could be favoured in brane models. Moreover we show that the DBI-cosmic string solutions are non-pathological everywhere in parameter space. Finally, in the limit in which the DBI model reduces to the Bogomolnyi-Prasad-Sommerfield (BPS) Abelian-Higgs model, we find that DBI cosmic strings are no longer BPS: rather they have positive binding energy. We thus argue that, when they meet, two DBI strings will not bind with the corresponding formation of a junction, and hence that a network of DBI strings is likely to behave as a network of standard cosmic strings.Comment: 25 pages, 12 figure

    Racetrack Inflation

    Full text link
    We develop a model of eternal topological inflation using a racetrack potential within the context of type IIB string theory with KKLT volume stabilization. The inflaton field is the imaginary part of the K\"ahler structure modulus, which is an axion-like field in the 4D effective field theory. This model does not require moving branes, and in this sense it is simpler than other models of string theory inflation. Contrary to single-exponential models, the structure of the potential in this example allows for the existence of saddle points between two degenerate local minima for which the slow-roll conditions can be satisfied in a particular range of parameter space. We conjecture that this type of inflation should be present in more general realizations of the modular landscape. We also consider `irrational' models having a dense set of minima, and discuss their possible relevance for the cosmological constant problem.Comment: 23 pages 7 figures. The final version with minor modifications, to appear in JHE

    Multiple Inflation, Cosmic String Networks and the String Landscape

    Full text link
    Motivated by the string landscape we examine scenarios for which inflation is a two-step process, with a comparatively short inflationary epoch near the string scale and a longer period at a much lower energy (like the TeV scale). We quantify the number of ee-foldings of inflation which are required to yield successful inflation within this picture. The constraints are very sensitive to the equation of state during the epoch between the two inflationary periods, as the extra-horizon modes can come back inside the horizon and become reprocessed. We find that the number of ee-foldings during the first inflationary epoch can be as small as 12, but only if the inter-inflationary period is dominated by a network of cosmic strings (such as might be produced if the initial inflationary period is due to the brane-antibrane mechanism). In this case a further 20 ee-foldings of inflation would be required at lower energies to solve the late universe's flatness and horizon problems.Comment: 27 pages, 6 figures; v2: refences adde

    Strings at the bottom of the deformed conifold

    Full text link
    We present solutions of the equations of motion of macroscopic F and D strings extending along the non compact 4D sections of the conifold geometry and winding around the internal directions. The effect of the Goldstone modes associated with the position of the strings on the internal manifold can be seen as a current on the string that prevents it from collapsing and allows the possibility of static 4D loops. Its relevance in recent models of brane inflation is discussed.Comment: 9+1 page

    Tensile Behaviour of Galvanised Grade 8.8 Bolt Assemblies in Fire

    Get PDF
    In structural fire engineering, the importance of bolt assemblies is often overlooked. Connection design uses the temperature-dependent bolt strength-reduction factors prescribed in Eurocode 3, despite the existence of two distinct failure modes under tension; necking of the bolt shank, and thread-stripping. While literature exists to predict failure modes at ambient temperature, there is no method for failure mode prediction for elevated temperatures where ductility is critical to avoid collapse. Galvanised M20 structural bolt assemblies and bolt material from a single batch have been tested under tension at a range of temperatures and strain-rates typical of those experienced in fire. Turned-down bolt test data produced stress-strain curves characteristic of different microstructures at ambient temperature, despite a tempered-martensitic microstructure being specified in the standards. The failure modes of bolt assemblies were found to be dependent on the as-received microstructure at ambient temperature. At elevated temperatures, however, only thread-stripping was observed

    Inflation from Warped Space

    Full text link
    A long period of inflation can be triggered when the inflaton is held up on the top of a steep potential by the infrared end of a warped space. We first study the field theory description of such a model. We then embed it in the flux stabilized string compactification. Some special effects in the throat reheating process by relativistic branes are discussed. We put all these ingredients into a multi-throat brane inflationary scenario. The resulting cosmic string tension and a multi-throat slow-roll model are also discussed.Comment: 39 pages; v4, added reference, to appear in JHE
    corecore