24 research outputs found

    Improvement to the Prediction of Fuel Cost Distributions Using ARIMA Model

    Full text link
    Availability of a validated, realistic fuel cost model is a prerequisite to the development and validation of new optimization methods and control tools. This paper uses an autoregressive integrated moving average (ARIMA) model with historical fuel cost data in development of a three-step-ahead fuel cost distribution prediction. First, the data features of Form EIA-923 are explored and the natural gas fuel costs of Texas generating facilities are used to develop and validate the forecasting algorithm for the Texas example. Furthermore, the spot price associated with the natural gas hub in Texas is utilized to enhance the fuel cost prediction. The forecasted data is fit to a normal distribution and the Kullback-Leibler divergence is employed to evaluate the difference between the real fuel cost distributions and the estimated distributions. The comparative evaluation suggests the proposed forecasting algorithm is effective in general and is worth pursuing further.Comment: Accepted by IEEE PES 2018 General Meetin

    Investigating Effects of Tulathromycin Metaphylaxis on the Fecal Resistome and Microbiome of Commercial Feedlot Cattle Early in the Feeding Period

    Get PDF
    The objective was to examine effects of treating commercial beef feedlot cattle with therapeutic doses of tulathromycin, a macrolide antimicrobial drug, on changes in the fecal resistome and microbiome using shotgun metagenomic sequencing. Two pens of cattle were used, with all cattle in one pen receiving metaphylaxis treatment (800 mg subcutaneous tulathromycin) at arrival to the feedlot, and all cattle in the other pen remaining unexposed to parenteral antibiotics throughout the study period. Fecal samples were collected from 15 selected cattle in each group just prior to treatment (Day 1), and again 11 days later (Day 11). Shotgun sequencing was performed on isolated metagenomic DNA, and reads were aligned to a resistance and a taxonomic database to identify alignments to antimicrobial resistance (AMR) gene accessions and microbiome content. Overall, we identified AMR genes accessions encompassing 9 classes of AMR drugs and encoding 24 unique AMR mechanisms. Statistical analysis was used to identify differences in the resistome and microbiome between the untreated and treated groups at both timepoints, as well as over time. Based on composition and ordination analyses, the resistome and microbiome were not significantly different between the two groups on Day 1 or on Day 11. However, both the resistome and microbiome changed significantly between these two sampling dates. These results indicate that the transition into the feedlot—and associated changes in diet, geography, conspecific exposure, and environment—may exert a greater influence over the fecal resistome and microbiome of feedlot cattle than common metaphylactic antimicrobial drug treatment

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Environmental persistence of equid herpesvirus type-1

    Get PDF
    Background: Equid herpesvirus type 1 (EHV-1) is ubiquitous in equine populations causing respiratory disease, and complications including late-term abortion and neurological disease. Eradication of EHV-1 from housing environments that typically contain unsealed wood and porous bedding materials can be challenging. However, consideration should be given to take advantage of the viral envelope's susceptibility to environmental conditions. Objective: To determine environmental persistence of EHV-1 on materials and in environmental conditions commonly found in equine facilities. We hypothesised that environmental conditions and materials would limit environmental persistence of EHV-1 in horse housing environments. Study design Experimental study. Methods Standard inoculum of EHV-1 strain OH03 was applied to leather, polyester-cotton fabric, two bedding materials (pinewood shavings and wheat straw) and polystyrene (plastic), and placed under three different environmental conditions (4 degrees C, indoors and outdoors). Virus titration and quantitative PCR (qPCR) were performed at six time points between 0 and 48 hours and the number of plaque-forming units (PFUs) was determined. Results: Viable EHV-1 was recovered up to 48 hours from all material-environmental condition combinations, with persistence decreasing over time. In general, outdoor environment had the greatest impact, irrespective of material tested, followed by indoor environment and 4 degrees C. On average, wood shavings had the greatest impact on persistence, followed by leather, straw, fabric and polystyrene. Main limitations The inoculum used in this study was not in a milieu consistent with nasal secretions. As such, virus particles may have been more sensitive to the materials and/or environmental conditions evaluated. Conclusions: Environmental factors had variable effects on environmental persistence. Although there were significant reductions in PFUs within the first 3 hours, irrespective of environment-material evaluated, viable virus was still recovered at 48 hours likely representing a transmission risk. Barrier precautions should be used to prevent spread of EHV-1 from unrecognised environmental reservoirs

    Viremia and nasal shedding for the diagnosis of equine herpesvirus-1 infection in domesticated horses.

    No full text
    BackgroundEquine herpesvirus type 1 (EHV-1) infection is associated with upper respiratory disease, EHM, abortions, and neonatal death.Research questionsAre nasal secretions a more sensitive biological sample compared to blood for the detection of EHV-1 infection? How long is EHV-1 detectable after primary infection by PCR?MethodsMedLine and Web of Science searches identified original peer-reviewed reports evaluating nasal shedding and viremia using virus isolation methods or PCR published in English before October 9, 2023.ResultsSixty experimental and 20 observational studies met inclusion criteria. EHV-1 detection frequency by qPCR in nasal secretions and blood from naturally-infected horses with fever and respiratory signs were 15% and 9%, respectively; qPCR detection rates in nasal secretions and blood from horses with suspected EHM were 94% and 70%, respectively. In experimental studies the sensitivity of qPCR matched or exceeded that seen for virus isolation from either nasal secretions or blood. Detection of nasal shedding typically occurred within 2 days after EHV-1 inoculation with a detection period of 3 to 7 days. Viremia lasted 2 to 7 days and was usually detected ≥1 days after positive identification of EHV-1 in nasal secretions. Nasal shedding and viremia decreased over time and remained detectable in some horses for several weeks after inoculation.Conclusions and clinical importanceUnder experimental conditions, blood and nasal secretions have similar sensitivity for the detection of EHV-1 when horses are sampled on multiple consecutive days. In contrast, in observational studies detection of EHV-1 in nasal secretions was consistently more successful

    Relationship between equine herpesvirus-1 viremia and abortion or equine herpesvirus myeloencephalopathy in domesticated horses: A systematic review.

    No full text
    BackgroundEquine herpes virus type 1 (EHV-1) infection in horses is associated with upper respiratory disease, neurological disease, abortions, and neonatal death.ObjectiveTo determine if there is an association between the level and duration of EHV-1 viremia and either abortion or equine herpesvirus myeloencephalopathy (EHM) in domesticated horses?MethodsA systematic review was performed searching numerous databases to identify peer reviewed reports that evaluated viremia and EHM, or viremia and abortion published before January 19, 2021. Randomized controlled trials and observational studies were assessed for risk of bias or publication quality.ResultsA total of 189 unique studies were identified, of which 34 met the inclusion criteria. Thirty studies evaluated viremia and neurologic outcomes including 4 observational studies. Eight experimental studies examined viremia and abortion, which used the Ab4 and OH03 virus strains or recombinant Ab4 derivatives. Incidence rates for both EHM and abortion in experimental studies varied among the studies as did the level of evidence. Viremia was generally detectable before the onset of either EHM or abortion. Risk of bias was generally low to moderate, sample sizes were small, and multiple studies reported negative outcome data.Conclusions and clinical importanceThe results of this study support that viremia is regularly present before EHM or abortion occurs. However, no inferences could be made about the relationship between the occurrence of either neurological signs or abortion and the magnitude or duration of viremia

    Vaccination for the prevention of equine herpesvirus-1 disease in domesticated horses: A systematic review and meta-analysis.

    No full text
    BackgroundEquine herpes virus type 1 (EHV-1) infection in horses is associated with respiratory and neurologic disease, abortion, and neonatal death.HypothesisVaccines decrease the occurrence of clinical disease in EHV-1-infected horses.MethodsA systematic review was performed searching multiple databases to identify relevant studies. Selection criteria were original peer-reviewed research reports that investigated the in vivo use of vaccines for the prevention of disease caused by EHV-1 in domesticated horses. Main outcomes of interest included pyrexia, abortion, neurologic disease, viremia, and nasal shedding. We evaluated risk of bias, conducted exploratory meta-analyses of incidence data for the main outcomes, and performed a GRADE evaluation of the quality of evidence for each vaccine subtype.ResultsA total of 1018 unique studies were identified, of which 35 met the inclusion criteria. Experimental studies accounted for 31/35 studies, with the remainder being observational studies. Eight vaccine subclasses were identified including commercial (modified-live, inactivated, mixed) and experimental (modified-live, inactivated, deletion mutant, DNA, recombinant). Risk of bias was generally moderate, often because of underreporting of research methods, and sample sizes were small leading to imprecision in the estimate of the effect size. Several studies reported either no benefit or minimal vaccine efficacy for the primary outcomes of interest. Meta-analyses revealed significant heterogeneity was present, and our confidence in the quality of evidence for most outcomes was low to moderate.Conclusions and clinical importanceOur review indicates that commercial and experimental vaccines minimally reduce the incidence of clinical disease associated with EHV-1 infection
    corecore