2,576 research outputs found

    A skewer survey of the Galactic halo from deep CFHT and INT images

    Get PDF
    We study the density profile and shape of the Galactic halo using deep multicolour images from the MENeaCS and CCCP projects, over 33 fields selected to avoid overlap with the Galactic plane. Using multicolour selection and PSF homogenization techniques we obtain catalogues of F stars (near-main sequence turnoff stars) out to Galactocentric distances up to 60kpc. Grouping nearby lines of sight, we construct the stellar density profiles through the halo in eight different directions by means of photometric parallaxes. Smooth halo models are then fitted to these profiles. We find clear evidence for a steepening of the density profile power law index around R=20 kpc, from -2.50 +- 0.04 to -4.85 +- 0.04, and for a flattening of the halo towards the poles with best-fit axis ratio 0.63 +- 0.02. Furthermore, we cannot rule out a mild triaxiality (w>=0.8). We recover the signatures of well-known substructure and streams that intersect our lines of sight. These results are consistent with those derived from wider but shallower surveys, and augur well for upcoming, wide-field surveys of comparable depth to our pencil beam surveys.Comment: 14 pages, 8 figures, 6 table

    Finding halo streams with a pencil-beam survey: new wraps in the Sagittarius stream

    Get PDF
    We use data from two CFHT-MegaCam photometric pencil-beam surveys in the g' and the r' bands to measure distances to the Sagittarius, the Palomar 5 and the Orphan stream. We show that, using a cross-correlation algorithm to detect the turnoff point of the main sequence, it is possible to overcome the main limitation of a two-bands pencil-beam survey, namely the lack of adjacent control-fields that can be used to subtract the foreground and background stars to enhance the signal on the colour-magnitude diagrams (CMDs). We describe the cross-correlation algorithm and its implementation. We combine the resulting main sequence turnoff points with theoretical isochrones to derive photometric distances to the streams. Our results (31 detections on the Sagittarius stream and one each for the Palomar 5 and the Orphan streams) confirm the findings by previous studies, expand the distance trend for the Sagittarius faint southern branch and, for the first time, trace the Sagittarius faint branch of the northern-leading arm out to 56 kpc. In addition, they show evidence for new substructure: we argue that these detections trace the continuation of the Sagittarius northern-leading arm into the southern hemisphere, and find a nearby branch of the Sagittarius trailing wrap in the northern hemisphere.Comment: 16 pages, 15 figures, 2 table

    The dynamics of z~1 clusters of galaxies from the GCLASS survey

    Get PDF
    We constrain the internal dynamics of a stack of 10 clusters from the GCLASS survey at 0.87<z<1.34. We determine the stack cluster mass profile M(r) using the MAMPOSSt algorithm of Mamon et al., the velocity anisotropy profile beta(r) from the inversion of the Jeans equation, and the pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The total mass distribution has a concentration c=r200/r-2=4.0-0.6+1.0, in agreement with theoretical expectations, and is less concentrated than the cluster stellar-mass distribution. The stack cluster beta(r) is similar for passive and star-forming galaxies and indicates isotropic galaxy orbits near the cluster center and increasingly radially elongated with increasing cluster-centric distance. Q(r) and Qr(r) are almost power-law relations with slopes similar to those predicted from numerical simulations of dark matter halos. Combined with results obtained for lower-z clusters we determine the dynamical evolution of galaxy clusters, and compare it with theoretical predictions. We discuss possible physical mechanisms responsible for the differential evolution of total and stellar mass concentrations, and of passive and star-forming galaxy orbits [abridged].Comment: 12 pages, 7 figures. Version accepted for publication in A&A after minor modification

    Asymptotic Conformal Yano--Killing Tensors for Schwarzschild Metric

    Get PDF
    The asymptotic conformal Yano--Killing tensor proposed in J. Jezierski, On the relation between metric and spin-2 formulation of linearized Einstein theory [GRG, in print (1994)] is analyzed for Schwarzschild metric and tensor equations defining this object are given. The result shows that the Schwarzschild metric (and other metrics which are asymptotically ``Schwarzschildean'' up to O(1/r^2) at spatial infinity) is among the metrics fullfilling stronger asymptotic conditions and supertranslations ambiguities disappear. It is also clear from the result that 14 asymptotic gravitational charges are well defined on the ``Schwarzschildean'' background.Comment: 8 pages, latex, no figure

    The Phase Space and Stellar Populations of Cluster Galaxies at z ~ 1: Simultaneous Constraints on the Location and Timescale of Satellite Quenching

    Full text link
    We investigate the velocity vs. position phase space of z ~ 1 cluster galaxies using a set of 424 spectroscopic redshifts in 9 clusters drawn from the GCLASS survey. Dividing the galaxy population into three categories: quiescent, star-forming, and poststarburst, we find that these populations have distinct distributions in phase space. Most striking are the poststarburst galaxies, which are commonly found at small clustercentric radii with high clustercentric velocities, and appear to trace a coherent ``ring" in phase space. Using several zoom simulations of clusters we show that the coherent distribution of the poststarbursts can be reasonably well-reproduced using a simple quenching scenario. Specifically, the phase space is best reproduced if satellite quenching occurs on a rapid timescale (0.1 < tau_{Q} < 0.5 Gyr) after galaxies make their first passage of R ~ 0.5R_{200}, a process that takes a total time of ~ 1 Gyr after first infall. We compare this quenching timescale to the timescale implied by the stellar populations of the poststarburst galaxies and find that the poststarburst spectra are well-fit by a rapid quenching (tau_{Q} = 0.4^{+0.3}_{-0.4} Gyr) of a typical star-forming galaxy. The similarity between the quenching timescales derived from these independent indicators is a strong consistency check of the quenching model. Given that the model implies satellite quenching is rapid, and occurs well within R_{200}, this would suggest that ram-pressure stripping of either the hot or cold gas component of galaxies are the most plausible candidates for the physical mechanism. The high cold gas consumption rates at z ~ 1 make it difficult to determine if hot or cold gas stripping is dominant; however, measurements of the redshift evolution of the satellite quenching timescale and location may be capable of distinguishing between the two.Comment: 10 pages, 4 figures, submitted to the Ap
    corecore