272 research outputs found

    Wood County Project Connect: Final Report for Event Held October 14, 2015

    Get PDF
    On October 14, 2015, Wood County, Ohio held its third Project Connect (PC) event at St. Mark’s Lutheran Church in Bowling Green, Ohio. Project Connect is designed to provide immediate goods and services to homeless individuals and those nearing homelessness. PC provides basic needs and critical services in one day at one location. Along with providing valuable and necessary services to help alleviate homelessness, an additional positive outcome for service providers is the opportunity to network with different agency members, and reinforce relationships, collaborations, and partnerships. This report presents the descriptives about the guests, providers, and volunteers at the event, as well as their feedback

    Plasmas in Saturn's magnetosphere

    Get PDF
    The solar wind plasma analyzer on board Pioneer 2 provides first observations of low-energy positive ions in the magnetosphere of Saturn. Measurable intensities of ions within the energy-per-unit charge (E/Q) range 100 eV to 8 keV are present over the planetocentric radial distance range about 4 to 16 R sub S in the dayside magnetosphere. The plasmas are found to be rigidly corotating with the planet out to distances of at least 10 R sub S. At radial distances beyond 10 R sub S, the bulk flows appear to be in the corotation direction but with lesser speeds than those expected from rigid corotation. At radial distances beyond the orbit of Rhea at 8.8 R sub S, the dominant ions are most likely protons and the corresponding typical densities and temperatures are 0.5/cu cm and 1,000,000 K, respectively, with substantial fluctuations. It is concluded that the most likely source of these plasmas in the photodissociation of water frost on the surface of the ring material with subsequent ionization of the products and radially outward diffusion. The presence of this plasma torus is expected to have a large influence on the dynamics of Saturn's magnetosphere since the pressure ratio beta of these plasmas approaches unity at radial distances as close to the planet as 6.5 R sub S. On the basis of these observational evidences it is anticipated that quasi-periodic outward flows of plasma, accompanied with a reconfiguration of the magnetosphere beyond about 6.5 R sub S, will occur in the local night sector in order to relieve the plasma pressure from accretion of plasma from the rings

    A Study of Ohio\u27s Correctional Institution Inspection Committee\u27s (CIIC) Inmate Surveys

    Get PDF
    Correctional facilities have a discernible social climate, or collection of contextual properties that derive from perceptions of both staff and prisoners. These properties include the physical, organizational, social, and emotional characteristics of correctional institutions. Ohio\u27s Correctional Institution Inspection Committee (CIIC) requested research assistance to assess the validity of their adult and youth surveys, which are administered during the CIIC\u27s regular inspections of facilities. The purpose of this study was to assess the validity of these instruments and the process by which they are administered. The study builds on the existing line of research on prison social climate surveys

    Control of InGaAs facets using metal modulation epitaxy (MME)

    Full text link
    Control of faceting during epitaxy is critical for nanoscale devices. This work identifies the origins of gaps and different facets during regrowth of InGaAs adjacent to patterned features. Molecular beam epitaxy (MBE) near SiO2 or SiNx led to gaps, roughness, or polycrystalline growth, but metal modulated epitaxy (MME) produced smooth and gap-free "rising tide" (001) growth filling up to the mask. The resulting self-aligned FETs were dominated by FET channel resistance rather than source-drain access resistance. Higher As fluxes led first to conformal growth, then pronounced {111} facets sloping up away from the mask.Comment: 18 pages, 7 figure

    Unpacking dasymetric modelling to correct spatial bias in environmental model outputs

    Get PDF
    Complex environmental model outputs used to inform decisions often have systematic errors and are of inappropriate resolution, requiring downscaling and bias correction for local applications. Here we provide a new interpretation of dasymetric modelling (DM) as a spatial bias correction framework useful in environmental modelling. DM is based on areal interpolation where estimates of some variable at target zones are obtained from overlapping source zones using ancillary information. We explore DM by downscaling runoff output from a distributed hydrological model using two meta-models and describe the properties of the methodology in detail. Consistent with properties of linear scaling bias correction, results show that the methodology 1) reduces errors compared to the source data and meta-models, 2) improve the spatial structure of the estimates, and 3) improve the performance of the downscaled estimates, particularly where meta-models perform poorly. The framework is simple and useful in ensuring spatial coherence of downscaled products

    Solar and wind energy enhances drought resilience and groundwater sustainability

    Get PDF
    Water scarcity brings tremendous challenges to achieving sustainable development of water resources, food, and energy security, as these sectors are often in competition, especially during drought. Overcoming these challenges requires balancing trade-offs between sectors and improving resilience to drought impacts. An under-appreciated factor in managing the water-food-energy (WFE) nexus is the increased value of solar and wind energy (SWE). Here we develop a trade-off frontier framework to quantify the water sustainability value of SWE through a case study in California. We identify development pathways that optimize the economic value of water in competition for energy and food production while ensuring sustainable use of groundwater. Our results indicate that in the long term, SWE penetration creates beneficial feedback for the WFE nexus: SWE enhances drought resilience and benefits groundwater sustainability, and in turn, maintaining groundwater at a sustainable level increases the added value of SWE to energy and food production

    Photon-mediated interactions between quantum emitters in a diamond nanocavity

    Get PDF
    Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers coupled to a diamond nanophotonic cavity. When the optical transitions of the two color centers are tuned into resonance, the coupling to the common cavity mode results in a coherent interaction between them, leading to spectrally-resolved superradiant and subradiant states. We use the electronic spin degrees of freedom of the SiV centers to control these optically-mediated interactions. Such controlled interactions will be crucial in developing cavity-mediated quantum gates between spin qubits and for realizing scalable quantum network nodes

    The Nexus Solutions Tool (NEST): An open platform for optimizing multi-scale energy-water-land system transformations

    Get PDF
    The energy-water-land nexus represents a critical leverage future policies must draw upon to reduce trade-offs between sustainable development objectives. Yet, existing long-term planning tools do not provide the scope or level of integration across the nexus to unravel important development constraints. Moreover, existing tools and data are not always made openly available or are implemented across disparate modeling platforms that can be difficult to link directly with modern scientific computing tools and databases. In this paper, we present the Nexus Solutions Tool (NEST): a new open modeling platform that integrates multi-scale energy-water-land resource optimization with distributed hydrological modeling. The new approach provides insights into the vulnerability of water, energy and land resources to future socioeconomic and climatic change and how multi-sectoral policies, technological solutions and investments can improve the resilience and sustainability of transformation pathways while avoiding counterproductive interactions among sectors. NEST can be applied at different spatial and temporal resolutions, and is designed specifically to tap into the growing body of open access geospatial data available through national inventories and the earth system modeling community. A case study analysis of the Indus River Basin in South Asia demonstrates the capability of the model to capture important interlinkages across system transformation pathways towards the United Nations' Sustainable Development Goals, including the intersections between local and regional transboundary policies and incremental investment costs from rapidly increasing regional consumption projected over the coming decades
    corecore