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A B S T R A C T   

Complex environmental model outputs used to inform decisions often have systematic errors and are of inap-
propriate resolution, requiring downscaling and bias correction for local applications. Here we provide a new 
interpretation of dasymetric modelling (DM) as a spatial bias correction framework useful in environmental 
modelling. DM is based on areal interpolation where estimates of some variable at target zones are obtained from 
overlapping source zones using ancillary information. We explore DM by downscaling runoff output from a 
distributed hydrological model using two meta-models and describe the properties of the methodology in detail. 
Consistent with properties of linear scaling bias correction, results show that the methodology 1) reduces errors 
compared to the source data and meta-models, 2) improve the spatial structure of the estimates, and 3) improve 
the performance of the downscaled estimates, particularly where meta-models perform poorly. The framework is 
simple and useful in ensuring spatial coherence of downscaled products.   

Software and data availability 

The necessary R code and data to produce the synthetic example, 
Table 1, and Figs. 4–7 are stored in a Zenodo repository at https://zeno 
do.org/record/5857189 (last access: 16 Jan 2022). 

1. Introduction 

Modern environmental decision making depends on the results of 
various outputs from environmental modelling (Jakeman et al., 2008; 
Schmolke et al., 2010). The need for impact modelling to support de-
cision making is particularly important in the face of unprecedented 
changes the world is currently experiencing in climate, land use and 
other environmental conditions (IPCC, 2021). The application of com-
plex environmental models is, however, not trivial, and the easily 
available outputs may be biased or of inappropriate scale or configu-
ration, leading to a need for further processing particularly for local 
applications. 

Mismatch between scales of analysis and the source data has been 
commonly addressed using downscaling, upscaling, or both. 

Downscaling methods attempt to estimate the state of a variable at a 
finer resolution by relating it to the state of the variable at a coarser 
resolution (von Storch and Zorita, 2019). They are useful when we wish 
to estimate the internal variability within some temporal or spatial unit. 
In dynamic downscaling, a fine-resolution model is applied within areas 
defined by product under downscaling, and where the coarse data 
provides boundary conditions for the fine-scale model. This is common 
when, e.g., global climate models are downscaled using regional climate 
models. In empirical downscaling, the link between the finer and coarser 
scales is determined by statistical methods. There is a large body of 
literature on different methods of empirical downscaling, for instance, 
using interpolation methods (e.g. Mennis, 2009; Kallio et al., 2019; 
Wang et al., 2015; Lima et al., 2021) or different machine learning 
methods (e.g. Latombe et al., 2018; Stevens et al., 2015; Bardossy et al., 
2005; Ahmed et al., 2013). The outputs from the downscaling methods 
may exhibit systematic errors (i.e. they may be biased; Tabari et al., 
2021) when compared to observations. These systematic errors may 
arise from imperfect model conceptualization and data aggregation 
(Teutschbein and Seibert, 2012) or from errors in input data (e.g. Sperna 
Weiland et al., 2015), and often need to be corrected (Ahmed et al., 

* Corresponding author. Aalto University, Otakaari 24, 02150, Espoo, Finland. 
E-mail address: marko.k.kallio@aalto.fi (M. Kallio).  

Contents lists available at ScienceDirect 

Environmental Modelling and Software 

journal homepage: www.elsevier.com/locate/envsoft 

https://doi.org/10.1016/j.envsoft.2022.105511 
Received 16 January 2022; Received in revised form 29 August 2022; Accepted 31 August 2022   

https://zenodo.org/record/5857189
https://zenodo.org/record/5857189
mailto:marko.k.kallio@aalto.fi
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2022.105511
https://doi.org/10.1016/j.envsoft.2022.105511
https://doi.org/10.1016/j.envsoft.2022.105511
http://creativecommons.org/licenses/by/4.0/


Environmental Modelling and Software 157 (2022) 105511

2

2013; J. C. Chen et al., 2021; Ibarra et al., 2021; Teutschbein and Sei-
bert, 2010). A large number of different approaches to bias correction 
are available (see e.g. Teutschbein and Seibert, 2012) and are of 
particular importance for climate change impact modelling (e.g. Hempel 
et al., 2013; Lange, 2019; Warszawski et al., 2014) which requires un-
biased meteorological forcing data (Tramberend et al., 2021). These 
approaches commonly deal with the temporal dimension with less 
attention given to correction of spatially autocorrelated errors in 
distributed environmental models (Nahar et al., 2018). 

Nonetheless, some methods to correct spatial bias exist. Hnilica et al. 
(2017) corrected precipitation with a combination of principal compo-
nent analysis and quantile mapping. Nahar et al. (2018) used a similar 
methodology, but apply independent component analysis instead of 
principal component analysis. Kim et al. (2021) developed a Bayesian 
Kriging-Based Spatial Disaggregation-Quantile Delta Mapping method, 
where precipitation distribution parameters are interpolated on to a fine 
grid with Kriging and subsequently used to bias correct downscaled 
timeseries. Lange (2019) conducted multivariate bias correction using 
modified version of Cannon (2018) which ensures that downscaled es-
timates are consistent with the original climate simulations. Further-
more, data assimilation methods are used to optimally combine 
observations with model outputs in order to reduce their systematic 
errors (Reichle, 2008). 

This study presents a novel interpretation of an advanced areal 
interpolation method Dasymetric Modelling (DM) as a method for spatial 
bias correction of downscaled data. Areal interpolation consists of all 
those methods which use values from a set source zones to estimate the 
same variables at a set of intersecting target zones (Comber and Zeng, 
2019; Goodchild and Lam, 1980). The target zones are commonly of a 
higher resolution than source zones. In areal interpolation, the value of 
the variable is distributed among target zones within a source zone, thus 
preserving the aggregate value in the area represented in the source 
zone. DM is an extension to areal interpolation where the distribution of 
the source zone value is guided by some model. DM and bias correction 
share a similar objective of adjusting values to satisfy some constraint – 
e.g., the distributed values at target zones must match that of their 
source zone, or scaling a daily timeseries to match a monthly reference 
value. 

We further note that when applying DM to downscale available 
coarse-resolution model outputs, the application can be described as 
meta-modelling. Meta-modelling is the process of building a model to 
emulate another model (also known as surrogate modelling; e.g. Razavi 
et al., 2012). In meta-modelling, the output of an original model is 
emulated by some statistical or process-based model from a set of input 
data with the common aim to reduce computational costs. Downscaling 
can be considered meta-modelling when the relationship between 
explanatory variables, for instance relating to topography, and e.g., a 
climate model output is established at a coarser scale and applied at a 
finer granularity. 

We conduct an experiment in the Upper Bhima Basin (UBB), central 

India, downscaling local runoff generation (i.e., without accumulation to 
streamflow). Several other methods have been developed to handle bias 
in runoff and streamflow. Skøien et al. (2006) extended kriging inter-
polation to account for topological relationships within a stream 
network necessary for the interpolation of streamflow records, and 
further developed a spatio-temporal topological kriging method in 
Skøien and Blöschl (2007). Paiva et al. (2015) provided another 
spatio-temporal kriging method to estimate river discharges along a 
river network. Loonat et al. (2020) used data assimilation of streamflow 
records to a distributed rainfall-runoff model by kriging and global bias 
correction. Naz et al. (2019) downscaled runoff data using a data 
assimilation scheme using soil moisture as an ancillary variable. Bennett 
et al. (2021) developed a mechanism for streamflow which specifically 
bias correct runoff and apply river routing to make it possible to use 
streamflow as the reference to correct against. 

In our case study, we examine the bias correcting property of dasy-
metric modelling in detail. We train two meta-models to emulate the 
local runoff output of the Community Water Model (CWatM; Burek 
et al., 2020) – a distributed physically based hydrological model – based 
on a global model run at 0.5◦ (approx. 50 × 50 km) resolution. The 
meta-models are then applied to a 5 arc-minute (approx. 10 × 10 km) 
grid within the same area. The 0.5◦ grid serves as the source zones giving 
a spatial reference of the magnitude of the values within the basin, and 
the 5 arc-minute grid serves as the target zones. The meta-model outputs 
at the target zones are then bias corrected using the source zone values 
as a reference. The comparison to CwatM at higher resolution is 
appropriate because the meta-models are trained on CwatM at lower 
resolution, emulating the behavior of the model. 

The experiment we conduct here extends previous work in Kallio 
et al. (2021, 2019), where global runoff products were downscaled with 
Dasymetric Mapping, i.e. DM with a single ancillary variable instead of a 
model. In the earlier studies, the bias correcting property is confounded 
due to A) use of irregular polygons which may be influenced by several 
intersecting source zones, B) the uncertainties related to river routing 
(modelling of accumulation of runoff in the stream network), C) the 
difficulty of assigning a low resolution streamflow value to the more 
complex, higher-resolution river network (see e.g. Bennett et al., 2021, 
for a discussion of this problem), and D) the use of a monthly timestep, 
which is large considering the size of the basins. The experiment here 
focuses on the bias correcting property by using a nested grid (controls 
the confounding by areal interpolation), comparing local runoff pro-
duction (controlling for uncertainties in routing models and aggregation 
effects), and is applied at a daily rather than a monthly timestep. In this 
way, we can isolate the influence of bias correction from the other fac-
tors influencing the performance. 

The remainder of the paper is structured as follows. Section 2 pro-
vides the background describing similarities and equivalence of DM to 
meta-modelling and bias correction, respectively. Section 3 describes 
our case study giving information on CwatM, the Upper Bhima Basin, 
meta-models and how we assess performance. Results and detailed 

Table 1 
Global performance metrics computed from the entire dataset covering all source or target zones, and all timesteps. α is the variability error term, β is the bias term, and 
r is dynamics term in the non-parametric KGEnp. KGEss is the skill score wrt. the benchmark AW ŷt . NRMSE refers to the Normalized Root Mean Square of Error where 
the standardization is given by the mean of the timeseries.  

Phase Model Set Performance 

NRMSE % α β r KGEnp KGEss 

Meta-model training RF Source zone, train set 12.5 0.99 1.00 0.97 0.96 – 
RF Source zone, test set 12.4 0.99 1.00 0.97 0.96 – 
LM Source zone, train set 26.5 0.84 1.00 0.74 0.70 – 
LM Source zone, test set 26.0 0.85 0.99 0.75 0.71 – 

Benchmark AW ŷt Source zone values used at target zones 56.8 0.86 1.08 0.69 0.65 – 
Meta-model application RF xt Target zones 45.6 0.86 1.06 0.59 0.56 − 0.24 

LM xt Target zones 49.7 0.62 0.99 0.53 0.40 − 0.72 
Bias correction RF ŷt Target zones 42.4 0.89 1.08 0.67 0.64 − 0.01 

LM ŷt Target zones 41.0 0.89 1.08 0.70 0.67 0.07  
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discussion of the case study outputs are given in Section 4. The bias 
correction framework and the case study are discussed in Section 5. 
Finally, we conclude the paper in Section 6. 

2. Dasymetric modelling, meta-modelling, and bias correction 

This section first introduces DM in Section 2.1. and proceeds to 
describe the similarities of the common DM workflow and meta- 
modelling in Section 2.2. In the next Section 2.3 we establish the 
equivalence of DM and linear scaling bias correction. In Section 2.4 we 
bring them all together in a single framework. 

2.1. Dasymetric modelling 

Areal interpolation – a form of spatial interpolation dealing with 
interpolating values from a source zone to another set of overlapping 
arbitrary target zones – is a standard practice in many fields (Comber 
and Zeng, 2019). In its simplest form, Area Weighted Interpolation 
(AW), a value from a source zone is assigned to target zones based on 
their overlapping areas as shown in Eq. 1 

ŷt =
∑

s∈S
ys

At∩s

As
(1)  

where ŷt is the estimated value at a target zone t, ys denotes the value 
associated with a source zone s, and A is the area of the zone. The target 
zone t is therefore assigned values from all source zones it intersects 
(denoted as the set S) according to the proportion of the area of the 
target zone (within each source zone, At∩s) to the area of each over-
lapping source zone. The formulation allows estimation of values in 
arbitrary target zones which do not neatly conform to the (also arbi-
trary) shape of the source zones. Areal interpolation has a pycnophylactic 
– mass preserving – property because it is, in essence, distributing the 
source zone values onto the overlapping target zones. This procedure 
leads to the preservation of the source zone values in the target zones 
(Mennis, 2009; Tobler, 1979). 

Dasymetric mapping is extension of AW where the interpolation is 
refined by the use of ancillary information (Comber and Zeng, 2019; 
Mennis, 2009). DM has originally been developed for improved carto-
graphic presentation of population density (Mennis, 2009; Wright, 
1936). A large body of literature has been written on different appli-
cations of DM and its extensions, particularly in the context of 
state-of-the-art population mapping (e.g. Stevens et al., 2015; Tatem, 
2017), demographic attributes (e.g. Tatem et al., 2014), and to lesser 
extent in other fields such as environmental modelling (Kallio et al., 
2019, 2021; Chen et al., 2019). In dasymetric mapping, the task of the 
ancillary data is to provide information on the distribution of the 
interpolated value within a source zone. With the ancillary information 
xt, Eq. (1) becomes 

ŷt =
∑

s∈S
ys

At∩sxt
∑

t∈T
At∩sxt

(2) 

which uses information about target zones t belonging to a set T, 
consisting of all target zones intersecting with source zone s, to scale the 
ancillary data. In Dasymetric Modelling (we will use DM to refer to 
Dasymetric Modelling for the remainder of the paper), the ancillary in-
formation xt is given by some model describing the target zone level 
spatial distribution of the variable given in source zones (rather than a 
single variable as in dasymetric mapping; Nagle et al., 2014). For a re-
view of areal interpolation methods we refer to the review by Comber 
and Zeng (2019). 

2.2. Dasymetric modelling and meta-modelling 

In statistical downscaling the relationship between ancillary variable 

(s) and the downscaled quantity is commonly regressed at the source 
zone level (von Storch and Zorita, 2019). This is a common workflow in 
DM as well (Mennis, 2009; Nagle et al., 2014). The model trained at 
source zones is subsequently applied at the target zone level to obtain 
the downscaled estimates. In DM, the estimates are used as the ancillary 
information xt. The outputs of the trained model are used to derive 
weights according to which the source zone value is distributed to 
contributing target zones. If the values associated with the source zones 
are an output of a model (e.g., a climate-, an impact- or some empirical 
statistical model), the workflow can be described as a meta-modelling 
approach. A meta-model attempts to emulate the output of the orig-
inal model with the aid of explanatory variables – in this case the 
meta-model attempts to estimate what the full model would have output 
at the target zone level if it was run at that resolution. The motivation of 
using different types of meta-models is often to reduce the complexity of 
a full model, to reduce the computational cost, and sometimes to reduce 
input data requirements (Asher et al., 2015; Razavi et al., 2012). The 
common workflow in DM can therefore be seen as meta-model assisted 
distribution of the model outputs evaluated at source zones on to the 
overlapping target zones. Areal interpolation (DM) allows this to be 
done with the objective of upscaling, downscaling, or representing the 
values in similar resolution, but different zonal arrangement (Kallio 
et al., 2021). 

2.3. Dasymetric modelling and bias correction 

In a special case of DM where all target zones are located within a 
single source zone (e.g. a nested grid, a common setup in downscaling 
earth science data) and each target zone is of the same area (e.g. a raster 
grid with an equal area projection), the area terms in Eq. (2) can be 
eliminated resulting in Eq. (3a). 

ŷt = ys
xt

∑t∩s
t xt

(3a)  

This equation can be read as solution where the value associated with a 
source zone, ys, is distributed to the target zones according to the pro-
portion of some meta-model output xt from the sum of meta-model re-
sults within the source zone. If we swap the position of ys and xt, the 
resulting Eq. (3b) is equivalent, but with the change in grouping of 
terms, we can now read the equation as the scaling of the meta-model 
outputs xt. 

ŷt = xt
ys

∑t∩s
t xt

(3b) 

If the denominator is divided by the number n of target zones within 
a source zone, we obtain the mean output μxt 

of the meta-model within 
the source zone. Using the source zone as our reference, the equivalent 
mean across n target zones within the source zone is μyt

= 1
nys, and thus 

we can simplify Eq. (3b) to Eq. (5) with the intermediate step given in 
Eq. (4), 

ŷt = xt

1
nys

1
n

∑t∩s
t xt

(4)  

ŷt = xt
μyt

μxt

(5)  

where ys is the value associated with the source zone in which the target 
zone is located, and μxt 

is the mean value of all meta-model outputs 
within the source zone. This formulation is identical to the linear scaling 
bias correction method shown in Eq. (6) (Lenderink et al., 2007; 
Teutschbein and Seibert, 2012) 

y*
model = ymodel

μobs

μmodel
(6)  
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where y*
model is the bias corrected model output. 

Although bias correction is commonly applied to timeseries data, it 
may also be applied to a spatial domain where target zone values are 
corrected against the source zone data. Thus, when stripped of the area 
terms under the conditions described above, DM is mathematically 
equivalent to the common linear scaling bias correction method. 

An example of linear scaling bias correction with one dimensional 
synthetic data is provided in Fig. 1, showing a cosine function and a 
hypothetical meta-model output xt, and its bias corrected counterpart 
ŷt , along with goodness-of-fit statistics. For illustration purposes, the 
hypothetical meta-model output for each point t was obtained here by 
adding random variation into the cosine series, dividing the values into 
groups, and subtracting a random amount from each group. Linear 
scaling is applied group-wise for each source s using Equation (5) rather 
than to the dataset as a whole, akin to the DM approach having multiple 
source zones for which to perform bias correction separately. From this 
example we note a few important properties of linear scaling: 1) by 
design, bias is eliminated group-wise and subsequently for the entire 
data series. 2) Pearson correlation coefficient is preserved within group, 
but changes for the entire series. 3) the magnitude of standard deviation 
is changed. 

The reason for preservation of Pearson correlation coefficient ρ (Eq. 
(7)) within a group is because ρ depends on how the two data series vary 
around their respective means. 

ρX,Y =
E[(X − μx)(Y − μY)]

σXσY
(7) 

Since each data point in a group is subjected to the same linear 
transformation, the relationship between the standard deviation σ and 
the mean μ remains unchanged. In other words, coefficient of variation 
CV (σ/μ) remains unaltered, even when the absolute magnitude of the 
standard deviation is changed. As a consequence, bias correction pre-
serves the dynamics provided by the model within each group, but 
because each group is subjected to different scaling operation, the 
overall dynamics (correlation) is altered; in this synthetic example 
Pearson correlation coefficient improves from 0.74 to 0.96. Fig. 1B 

shows autocorrelation functions (correlation of a variable with itself) for 
the true original, the meta-model output xt, and bias corrected meta- 
model output ŷt . Autocorrelation is significantly improved with the 
method. Given the equivalence between linear scaling and dasymetric 
mapping on nested grids, a similar behavior is expected in a spatial bias 
correction context. 

We note that for the linear scaling bias correction to work as 
described here, all meta-model output values xt and the reference values 
associated with the source zones ys should be strictly finite-positive 
values to prevent erratic behavior. 

2.4. Dasymetric modelling as a combined downscaling-bias correction 
framework 

The previous sections describe how meta-modelling and bias 
correction relate to DM. Fig. 2 shows workflows for each of these three 
methods separately and combined together into a single framework. 
Each of the three methods have a specific purpose in the workflow. The 
meta-model outputs xt evaluated at the target zones is responsible for 
representing the spatial dynamics of how the value is distributed within a 
source zone, i.e., the meta-model output should have a high correlation 
with the ground truth values within the source zones. Bias correction 
ensures that the spatial information associated with source zones are 
preserved in the target zones, leading to spatially debiased estimates. DM 
provides flexibility in the spatial configuration of source- and target 
zones. It describes how non-conforming source and target zones are 
handled – how should the meta-model output in each target zone be 
divided during the intersection with source zones, and how to combine 
the values back to the original target zones after bias correction. This 
operation may differ for instance for intensive (standardized variables, e. 
g., population density, or water use per capita) and extensive variables 
(counts, e.g., the amount of population, or volume of water). 

The workflow is agnostic as to how xt is estimated – whether given by 
another similar model, a meta-model, or measured data. Similarly, the 
method is agnostic as to where the source zone reference values ys are 
obtained. In principle, with the redistribution of conventional DM 

Fig. 1. Panel A) shows a 1-dimensional schematic of linear scaling bias correction and demonstrates some properties of the method. Statistics r, sd, and pbias are the 
components Kling-Gupta Efficiency (Pearson correlation coefficient, ratio of standard deviations, and percent bias, respectively) and are evaluated against the true 
function shown in dashed red line. Panel B) shows an autocorrelation function computed for each of the three data series. 
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interpreted here as bias correction, linear scaling may be replaced by 
more advanced bias correction methods. This leads to the framework 
being modular, consisting of three distinct parts. 

3. Case study 

We explore the dasymetric modelling framework as interpreted in 
Fig. 2, and its properties, by a case study where we downscale a coarse 
resolution (0.5◦, source zones) CWatM simulation with a global extent 
onto a higher resolution, 5 arc-minute grid (target zones). We make use 
of meta-models trained at the source zone level and applied at the target 
zones. The results are compared to a run of CWatM at the target zones in 
order to evaluate the usefulness of the methodology and the ability to 
emulate a more spatially detailed model output. The experiment is setup 
so that the source and target zones are nested, which reflects the 
simplification described in Section 2.3 – this allows us to examine the 
efficiency of the spatial bias correction without the added complication 
of non-conforming source and target zones. 

In Section 3.1 we give a brief introduction to CWatM, and Section 3.2 
contains a description of the study area, the Upper Bhima Basin. Next, 
Section 3.3 introduces the two meta-models used, and Section 3.4 de-
scribes how we assess the downscaling performance. 

3.1. Community Water Model 

The Community Water Model is an open-source integrated hydro-
logical and channel model that calculates water availability (surface and 
groundwater), environmental flow requirements, and socio-economic 
water demands and impacts from water infrastructures such as reser-
voirs, groundwater pumping, and irrigation (Burek et al., 2020). The 
global applications of the model are based on a 0.5◦ or 5 arc-minute 
resolution grid and are run at a daily temporal resolution. The model 

can be used for regional applications using a daily temporal and 30 
arc-sec spatial resolution. For topography and land cover, it uses a 
sub-grid approach and for soil and routing processes, it uses sub-daily 
timesteps. 

The conceptual framework and structure of CWatM are similar to 
that of other hydrological models such as H08 (Hanasaki et al., 2006, 
2008, 2010), WaterGAP (Alcamo et al., 2003; Flörke et al., 2013), 
PCR-GLOBWB (van Beek et al., 2011; Wada et al., 2014) and others. The 
model accounts for future water demands based on socio-economic 
change and the impacts of water availability in response to climate 
change. Irrigation water demand is estimated for paddy and non-paddy 
crops separately by dynamically linking irrigation water demand with 
the surface and soil water balance. For the Upper Bhima basin CWatM is 
forced by the meteorological variables including temperature, wind 
speed, relative humidity, incoming longwave and shortwave radiation, 
and surface air pressure from W5E5 v2.0 (Cucchi et al., 2020). For 
precipitation, we use data from Pai et al. (2014). Please see Burek et al. 
(2020) for a more detailed description of CWatM hydrological processes. 

3.2. Upper Bhima Basin 

The Bhima Basin in India, shown in Fig. 3, is a highly managed and 
densely populated watershed with important rain-fed and irrigated crop 
production. Rainfall occurs towards the west and concentrates through 5 
months of monsoon, with a total annual rainfall of around 35 km3 

(approx. 760 mm per year). 
The Bhima basin is an upstream basin of the Krishna Basin, origi-

nating in the mountains of the western Ghats, with a river length of 
~325 km. The Bhima basin supports a population of 18.7 million 
(2015), distributed over 45 800 km2 of largely agricultural land, flowing 
mostly within the state of Maharashtra. The largest urban agglomeration 
within the Bhima Basin is Pune with nearly 7 million residents, followed 

Fig. 2. The workflows in A) meta-modelling, B) bias correction, C) dasymetric modelling, and D) the spatial bias correction framework consisting of A-C.  
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by Solapur with approximately 1.2 million residents in 2015. CWatM 
has been successfully applied at the Bhima Basin (Guillaumot et al., 
2022). 

3.3. Meta-models 

Two meta-models were developed to estimate CWatM modelled 
runoff output over Upper Bhima Basin during 2001–2010. The first 
meta-model is a standard Ordinary Least Squares Regression, referred to 
as the linear model, LM. The second meta-model is based on Random 
Forest Regression (RF; Breiman, 2001). Both models were trained at the 
source zone level (0.5◦ resolution) with the same model equation based 
on derived variables from a Digital Elevation Model (DEM), daily 

precipitation (P) and daily temperature (T) measurements 

xts =Pts + Pts− 1 + Pts− 2 + sum
(
Pts− 1,…,− 7

)
+ sum

(
Pts− 1,…,− 30

)

+ sum
(
Pts− 1,…,− 180

)
+ DSP + Tts + Tts− 1 + Tts− 2 + mean

(
Tts− 1,…,− 7

)

+ elevation + DUNE (8)  

where xts is the output of meta-model at timestep ts, DSP is the number of 
Days Since previous Precipitation event, and DUNE is a topographic 
index (Loritz et al., 2019) computed from the HydroSHEDS 15 arc sec-
ond DEM (Lehner et al., 2008). DUNE describes runoff production 
through a combination of gravitational potential energy of water (height 
above nearest drainage), and dissipation of that potential energy as 
water moves along the landscape (distance to nearest drainage). Loritz 
et al. (2019) find that it can distinguish between regions with different 
runoff producing regimes, and Kallio et al. (2019) found it useful in a 
downscaling context with variable terrains. Both elevation and DUNE 
were aggregated from the 15 arc-second elevation model to 0.5◦ degree 
and 5 arc-minute resolution by taking their mean value. RF was applied 
using the ranger package for R (Wright and Ziegler, 2017) with 500 
trees, unlimited tree depth, and variance-based split rule. 

We chose the LM and RF meta-models to have a comparison of a 
simple linear meta-model, and a more complex machine learning 
method which can deal with non-linear relationships between the pre-
dictand and predictors (Cutler et al., 2007), and which has been suc-
cessfully used in downscaling studies (e.g. C. Chen et al., 2021; Hutengs 
and Vohland, 2016), including DM (Stevens et al., 2015). Both 
meta-models were trained with the output of CWatM global simulation 
run at 0.5◦ resolution using those computational cells which intersect 
the study area of Upper Bhima Basin (Fig. 3). The source zone dataset 
was divided so that a random 75% of data points (all 30 source zones and 
all 3652 daily timesteps over 2001–2010 together yields 109 054 data 
points) were used for training, and the remaining 25% datapoints were 
used for testing. 

When applying bias correction, we first shift the meta-model outputs 
so that the minimum value within each source zone is > 0 (Reibel and 

Fig. 3. The Upper Bhima Basin on the western peninsular of India. The map shows the mean annual precipitation over 2001–2010 at the target zone level, major 
hydrological features of the basin as well as the source and target zones used in the case study. 

Fig. 4. Local bias of CWatM simulated source zones (0.5◦) runoff ys against 
target zones (5 arc-min) runoff yt , computed over 3 × 3 moving window. 
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Agrawal, 2007), if there are any negative values. Shifting the values is 
done here because 1) for the linear scaling to work as described, all 
values should be positive, and 2) negative runoff values make no 
physical sense. While there may be better alternatives to removing 
negative values from meta-model outputs, we shift because shifting 
preserves the variability provided by the model (i.e., the standard de-
viation is preserved), which is task given to the meta-models in Section 
2.4. We note that as a result, CV of any shifted timeseries is not pre-
served, because the mean changes, but standard deviation does not. Bias 
correction is applied to each daily timestep separately. 

3.4 Assessment 

We assess the performance of meta-models and bias corrected meta- 
models in downscaling coarse resolution CWatM output (at the source 
zone level) against a high resolution model run of CWatM (at the target 
zone level) using Normalized Root Mean Square of Error (NRMSE, 
normalized using the mean) and a form of the Kling-Gupta Efficiency 
(KGE; Gupta et al., 2009). KGE is a multi-objective function consisting of 
measures of bias, variability, and dynamics shown in Eq. 9 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

(9)  

where r is the Pearson correlation coefficient between simulations sim 
and observations obs, α is a measure of variability error σsim/σobs

, and β is 

the bias μsim/μobs
. σ stands for the standard deviation, and μ for the mean. 

We use a non-parametric variant of KGE where the variability α is 
described using the average error in normalized Flow Duration Curves 
(FDC) and Pearson correlation coefficient is replaced with Spearman 
rank correlation (Pool et al., 2018). We use the non-parametric KGE 
because standard deviation is sensitive to the mean of the timeseries, 
and thus the term is not independent of the bias, whereas the normalized 
FDC is independent of a possible bias in the timeseries. Further, 
Spearman rank correlation is desired here because it is less sensitive to 
extreme values (Pool et al., 2018). 

In order to assess an improvement in the overall skill of the down-
scaling, we also compute a KGE skill score KGEss using Eq. (10) (Knoben 
et al., 2019), 

KGEss =
KGEmodel − KGEbenchmark

1 − KGEbenchmark
(10)  

where KGEmodel refers to the meta-model, and KGEbenchmark refers to the 
performance of source zone output of CWatM as an estimate of the target 
zone output of CWatM. KGEss is interpreted so that any positive value 
means improvement over the benchmark, KGEss = 0 signifies equal 

Fig. 5. Local KGEnp performance computed from a 3 × 3 moving window and all timesteps for A) source zone values AW ŷt , B) LM meta-model output xt , C) KGEss 

between LM xt and AW ŷt D) bias corrected LM meta-model output ŷt , and E) KGEss between LM ŷt and AW ŷt . The lower row shows F) RF meta-model xt , G) KGEss 

between RF xt and AW ŷt , H) bias corrected RF ŷt , and I) KGEss between RF ŷt and AW ŷt . The mean flow benchmark performance with KGE = − 0.41 is obtained by 
using temporally averaged mean runoff for the entire timeseries as a prediction (Knoben et al., 2019). 

Fig. 6. Spatial correlation computed in 20 km lags, showing the 90% distribution and the median of the reference model run (CWatM at 5 arc minute target zones) 
and the distributions and the median of the meta-model outputs xt and bias corrected outputs ŷt . Panel A) shows AW, a benchmark given by the source zone values, 
B) shows the distributions for LM meta-model, and C) for RF meta-model. 
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model performance, and negative values indicate poorer model perfor-
mance. KGEss can take any value between +∞ (when KGEbenchmark ap-
proaches -∞) and -∞ (when KGEmodel approaches -∞). For more details, 
we refer the reader to Knoben et al. (2019). 

4. Results and interpretation 

We discuss three different aspects of the performance of DM with 
linear scaling bias correction. First overall performance of the meta- 
models, benchmark, and the results of the bias correction (Section 
4.1), second, how DM is affecting the spatial correlation (4.2), and third, 
we consider temporal efficiency (4.3). 

4.1. Improved global and local performance after bias correction 

Both meta-models trained at the source zone level show good overall 
performance and a comparison between a training and testing datasets 
show no sign of overfitting (Table 1). Of the two meta-models, RF shows, 
however, considerably better performance (KGEnp 0.96) than LM (KGEnp 
0.71) in the testing dataset. When the meta-models trained at the source 
zones are applied to the target zones, their performance considerably 
deteriorates, as expected for out of sample prediction. Error increases 
and the performance in all components of KGEnp decrease. A global 
comparison of the meta-models benchmarked against use of the source 
zone values for the target zones (AW ŷt ) shows considerably worse 
performance for both meta-models. The deteriorating performance is 
likely due to 1) the simplicity of the meta-models; they do not consider 
land use or soil properties (which increase in importance in higher 
resolutions) and thus are not able to represent the heterogenous con-
ditions existing within the basin, and 2) the meta-model training using a 
lower resolution (spatially averaged) model run does not represent all 

the conditions found when modelling is performed in higher resolution. 
Despite the meta-models showing inferior performance in the KGEnp 
components than AW ŷt , overall errors are smaller, as shown in Table 1. 

The global goodness-of-fit statistics reveal that after applying the DM 
spatial bias correction, performance is similar to the benchmark with 
further reduced errors. We note that because the source model runs have 
8% higher runoff than target zone model runs (reflected in the bias 
component of AW ŷt in Table 1, and shown in Fig. 4 as comparison 
between source and target zone runoff), the maximum attainable KGE, 
even when the dynamic and variability terms were perfectly matched, is 
0.92. That is, the assumption that source zone information needs to be 
preserved means that we have potentially accepted a discrepancy 
compared to the target zone model runs. This level of KGE shows a very 
high match between two timeseries. In DM, bias is corrected for each 
source zone separately and consequently for the entire area, however, 
the spatial differences in the bias lead to different maximum attainable 
KGE in each area. We note here that the two CWatM model runs use 
different climate forcing data, which is a major source of errors in hy-
drological model runs (Sperna Weiland et al., 2015), and that it is known 
that model runs at different levels of spatial aggregation often result in 
differences in the simulated water balance (Wen et al., 2021). Due to this 
model-to-model comparison we do not assess which one more correctly 
represents the true runoff production within UBB. The merits of the 
presented downscaling method (without meta-models) against observed 
streamflow records are assessed in Kallio et al. (2019, 2021). 

Using a global evaluation, however, only provides a partial under-
standing of the model performance. Fig. 5 shows how local performance 
is distributed across the basin in small neighborhoods of 3 × 3 target 
zones. The maps reveal that the meta-models perform more poorly than 
the benchmark in the central and eastern part of the basin (Fig. 5C, G), 
areas characterized by low rainfall resulting in low runoff. However, 

Fig. 7. Selected time periods from three source zones showing the 90% distribution of target zone values within the source zones for AW, LM and RF and their bias 
corrected counterparts. Panel A and B are located where meta-model performance is relatively high (see Fig. 5), and panel C where meta-models perform poorly. The 
timeseries distribution shown here are not influenced by the neighboring source zones. 
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both meta-models improve on the performance in the western basin 
where runoff production has a high spatial gradient such that down-
scaling is more important. Bias correcting the meta-model output with 
DM eliminates nearly all differences between LM ŷt and AW ŷt in the 
area where the meta-model LM xt was found to be the poorest, while still 
maintaining the improvement of the meta-model within the high- 
gradient zone. The poor performance artefact found in AW ŷt along 
longitude 74◦ E becomes almost eliminated in LM ŷt . The artefact is 
entirely eliminated in RF ŷt , but has much higher variability in perfor-
mance elsewhere compared to AW ŷt than LM ŷt . While the RF meta- 
model shows extremely high performance at the source zone level, 
this finding may indicate that while it performs well on source zone 
testing data, it has still overfitted on the training data and is not as well 
transferable to the higher resolution target zones as the simpler LM 
meta-model. We note here, however, that the LM meta-model predicts 
nearly half of data points as negative runoff values, and the good per-
formance can only be achieved after restricting the outputs to strictly 
positive values (see Section 2.3). 

4.2. Improved spatial correlation 

One of the main benefits of spatial bias correction is that the spatial 
structure of outputs can substantially improve, similarly to the auto-
correlation function shown in Fig. 1B. Fig. 6 shows the median and the 
90% distribution of spatial correlation of the benchmark, meta-models, 
bias corrected meta-models, and the reference model run of CWatM5min, 
computed between all pairs of target zones. The source zone values at 
target zones AW ŷt show a reasonably good agreement with the refer-
ence model run. Both runs are made with the same model (albeit with 
different climate forcing) and thus it should be expected that when 
modelling the same output variable, their large-scale spatial correlation 
would be similar. However, the effect of the coarse correlation can really 
be seen at the short distances (the first two bins in Fig. 6A), since the 
resolution of the 0.5◦ source zones is approximately 50 km at UBB, a 
major proportion of all correlation pairs show a perfect match (corre-
lation = 1). This is not the case for the meta-models in Fig. 6B and C. The 
figures also show that the spatial correlation structure of the meta- 
models in the study area substantially improves in both cases, though 
for RF the improvement is more modest than using LM due to the better 
structure in RF. Apart from small differences, spatial correlation in AW 
ŷt , LM ŷt , and RF ŷt are all highly similar. 

4.3. Assessment of timeseries 

Evaluations based on global and local performance and spatial cor-
relations suggest that using solely source zones seems to be a viable 
option. However, it does not accomplish the goal of downscaling as 
achieved using DM. This is highlighted in Fig. 7, which shows examples 
of the distribution of runoff values against time within three different 
source zones. The first row in the figure visualizes the fact that AW ŷt 
does not show any distribution of values within the source zone, while 
LM (row two) RF (row three) show a large distribution of values. The 
timeseries also illustrates many of the properties of linear scaling bias 
correction: 1) Panels A1 to A3 show that when the meta-model estimates 
are reasonably good, and with their means close to the reference value of 
the source zone (AW ŷt ), there are only minor adjustments to the dis-
tribution. 2) In panels B1 to B3 in mid-June and mid-July 2004, bias 
correcting meta-model outputs improves the distribution estimate. 
However, around July 1st, source zone value AW ŷt is outside the en-
velope of the CWatM reference model run, and thus the distribution of 
bias corrected meta-model outputs have also moved outside the enve-
lope. 3) Panels C1 to C3 show multiple years of runoff production in the 
area where the performance of all ŷt estimates are poor. The LM meta- 
model produces a significant number of negative runoff values and a 
too wide a range of values. Bias correcting brings a major improvement 

in the values although the performance is still poor overall as evidenced 
by the maps in Fig. 5. Similar improvement is seen also for RF, however 
without the need to shift values. 4) The absolute magnitude of the dis-
tribution changes according to the direction of the adjustment; if the 
meta-model mean is higher than the reference value, the distribution 
shrinks because the adjustment μobs/μmodel 

< 1 (see Eqs. (5) and (6)). The 

effect is reversed if the mean of meta-model outputs is smaller than the 
reference. 

As the examples in Fig. 7 portray, the final performance of the 
timeseries depends on the accuracy of the source zone reference values 
for providing an unbiased estimate, and on the ability of the meta-model 
to accurately portray the dynamics within the source zone. 

5. Discussion 

5.1. Differences to alternative methods and high-resolution modelling 

Our study describes spatial bias correction with a method that 
complements methods found in the literature, mainly based on point- 
observations, in that it specifically addresses downscaling of data with 
(arbitrary) areal spatial support. Closest areal interpolation alternative, 
area-to-area kriging, results in areal output, but require areal features to 
be first cast to point representation for estimation of the semi-variogram 
(Hu and Huang, 2020). This intermediate step is unambiguous. Addi-
tionally, kriging is unbiased at the observed point locations, but the 
consequence of using point representation for areal features is that es-
timates may no longer be unbiased across areal features, which is a 
feature of DM. Kriging-based runoff interpolation furthermore require 
observations with a high spatial density (Parajka et al., 2015), not 
generally available in data-scarce contexts. On the other hand, data 
assimilation methods estimate an optimal combination of model simu-
lations and reference data, but do not result in entirely unbiased esti-
mates. They also require rigorous a priori uncertainty estimation for both 
model outputs and observations. The standard method of DM is math-
ematically and conceptually simple and relatively easy to implement: 
statistical (meta-)modelling of arbitrary complexity, linear scaling bias 
correction based on means, and spatial intersections between source and 
target zones. 

Furthermore, the DM methodology presented herein provides a 
number of advantages over a full CWatM simulation at the higher res-
olution: 1) substantial computational improvement compared to 
running the full model. In our case study consisting of 30 source zones, 
567 target zones and 3652 timesteps, the unoptimized DM imple-
mentation in R language (R Core Team, 2020) runs within a few minutes 
(including training of the meta-models), compared to approximately an 
hour (Kallio, 2020) for a full CWatM run at 5 arc-minute resolution in 
the area (without calibration procedure), 2) statistical models such as 
the LM and RF models used here can use a wide range of explanatory 
variables while hydrological models have strict requirements for inputs, 
3) faster calibration to the study area compared to calibrating a 
distributed hydrological model against observed data or regionalizing 
parameters from another area, and 4) a wider pool of experts is familiar 
with statistical modelling than with physically based, distributed hy-
drological modelling. Each of the advantages listed here stack up when 
uncertainty management requires the use of multiple estimates, as is 
often the case (Saxe et al., 2021). 

5.2. Sensitivities and limitations 

In light of the presented results, source zone values AW ŷt , despite 
not being downscaled, seem to reflect the runoff outputs of the target 
zone reasonably well. The question therefore arises whether down-
scaling with the methodology of meta-models and bias correction bring 
any added value? Our analysis clearly suggests that there is little benefit 
in downscaling in general when the area within a source zone is ho-
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mogenous with no large differences in the output. In these regions, using 
the coarse resolution data may be justified against the added complexity 
of training, applying and bias correcting a meta-model. Similar concepts 
have been long explored in hydrological literature; e.g. the concept of 
Hydrological Response Units in which areas with similar hydrological 
functioning are lumped together, or model applications with variable 
modelling resolution (Gharari et al., 2020). There is, however, strong 
improvement in the performance in areas with a high gradient in the 
modelled outputs, as seen in the western part of the UBB (Fig. 5). 

Furthermore, the standard DM methodology used here assumes that 
the reference values provided by source zones are unbiased and accurate 
for the areas they describe. There are very few variables which can be 
measured to certainty over large spatial domains or variable spatial 
units (The Modifiable Area Unit Problem, MAUP; Manley, 2014), and 
this uncertainty can affect the regressed model parameters (Fothering-
ham and Wong, 1991). Our case study provides a simplified (but useful) 
use case with well-defined source and target zones as nested grids 
defined by a CWatM simulations, and where the configuration or sizes of 
target zones play no role. This allowed us to have a detailed look at the 
properties of DM as a downscaling and spatial bias correction method 
without an added complexity of non-conforming target and source 
zones. As an areal interpolation method, DM can, however, deal with 
arbitrarily shaped source and target zones, and therefore can be used to 
address MAUP (Dark and Bram, 2007; Goodchild and Lam, 1980; Kallio 
et al., 2021). Performance of the downscaling to non-conforming target 
zones in hydrology has been assessed in Kallio et al. (2019, 2021) and 
the uncertainty in different realizations of target zones in Virkki (2019). 
We note that modified DM methodologies able to deal with uncertain 
source and ancillary data are also available (Leyk et al., 2013; Nagle 
et al., 2014). 

However, while DM methodology can handle arbitrary overlapping 
configurations of source and target zones, it does not handle spatial 
dependencies across source zones. In environmental modelling, this 
particularly means processes such as streamflow accumulation, or air 
pollution: the entire upstream catchment influences streamflow at any 
particular location, and atmospheric processes can transport pollutants 
from far-away regions. The meta-model used may include these spatial 
dependencies, but independent bias correction at each source zone 
means that discontinuities and mass-balance violations may be intro-
duced at source zone boundaries. Methods for bias correction of 
streamflow have been developed which handle the tree-like structure of 
stream networks (see e.g. Bennett et al., 2021; Gottschalk, 1993; Paiva 
et al., 2015; Skøien et al., 2006). The standard DM methodology is 
suitable for any process which may be considered local, such as runoff 
generation (without accumulation), soil moisture, land use and land 
cover, or soil properties, or when the source data covers the entire area 
of generating process (see e.g. the application of the framework to 
migration data in Niva et al., 2022). 

5.3. Potential advancements for DM as a bias correction framework 

In our case study, bias correction is carried out individually for each 
timestep, and therefore the distributions of LM ŷt and RF ŷt closely 
follow the source zone values AW ŷt . However, extension to spatio- 
temporal variant of DM (Mennis, 2016) means that the reference 
source zone values could be expressed in a spatio-temporal domain, e.g. 
providing a monthly reference value for the source zone. In such a case, 
the daily bias corrected meta-model outputs would better retain tem-
poral dynamics provided by the meta-model – an aspect which is lost 
with daily adjustments. 

While the linear scaling method used in this study does not always 
result in the correct distribution of runoff values within source zones, 
other more advanced bias correction methods can be implemented. 
Knowledge about the distribution within the source zone, say the stan-
dard deviation of values found within, variance scaling (Chen et al., 

2011) could be used to correct for both mean, and standard deviation. If 
the actual distribution is known or can be estimated a priori for each 
source zone, more advanced methods like quantile-quantile mapping 
(Teutschbein and Seibert, 2012) can be used instead (and is recom-
mended, if possible; Teutschbein and Seibert, 2013). We can expect 
these methods to improve the spatial distribution of runoff values, and 
thus further improve downscaling performance. In principle, the used 
bias correction method is limited by what information is available at the 
source zone level. We note here, however, that any method which 
modifies the distribution of the meta-model outputs, also modifies their 
spatial correlation. In DM, the spatial dynamics (correlation) of the 
meta-model is preserved within source zones, and only modified across 
source zones. This behavior is different from methods which apply bias 
corrections continuously. 

We close the discussion of the presented methodology with a remark 
that while areal interpolation, and as an extension, DM, are based on 
area standardization, this is not a strict requirement. The methodology 
can extend to other type of variables as well, such as water use per 
capita. The modification from standard areal interpolation that needs to 
be done to support other standardization schemes is to determine how 
the values are divided when intersecting source and target zones, and 
when combining the target zone intersections back to original (i.e., the 
areal interpolation component of DM workflow in Fig. 2D). This is 
straightforward when standardization is by area but can be more 
complicated for alternative standardizations. 

6. Conclusions 

In this paper we presented an interpretation of dasymetric modelling 
as a flexible spatial bias correction framework for downscaling envi-
ronmental model outputs. We showed that the common workflow in 
dasymetric modelling can be described using concepts of meta- 
modelling and that the distribution of source zone values in dasy-
metric modelling is in fact equivalent to the common linear scaling bias 
correction method. In a case study we then downscale coarse resolution 
runoff estimates from CWatM (source zones) and compare the outputs 
against a higher-resolution model run (target zones). 

By exploring the properties of linear scaling in a spatial bias 
correction setting within the DM framework, we find that the DM 
methodology works well in areas where runoff production exhibits a 
strong gradient, but that there is limited benefit in more homogenous 
areas. The meta-models based on precipitation, temperature and topo-
graphic data have poor performance in most of the study area. Cor-
recting for the spatially autocorrelated errors (spatial bias), however, 
corrects most of the problems exhibited by the meta-model outputs and 
significantly improve spatial correlation structure. The benefit is 
strongly dependent on unbiased reference values associated with the 
source zones, and correctly represented dynamics by the meta-models. 

Dasymetric modelling is a mature technique developed in population 
studies with multiple variants in the literature. It offers great potential 
for environmental impact studies where large amount of data reflects 
the future uncertainty space and downscaling to local scales is impera-
tive for policy making. As the presented downscaling and spatial bias 
correction method, it offers a flexible, simple, and effective method 
which can accommodate arbitrarily shaped areal units for both source 
and target zones. 
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Skøien, J.O., Blöschl, G., 2007. Spatiotemporal topological kriging of runoff time series. 
Water Resour. Res. 43 https://doi.org/10.1029/2006WR005760. 
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