44 research outputs found

    Functional Desaturase Fads1 (Δ5) and Fads2 (Δ6) Orthologues Evolved before the Origin of Jawed Vertebrates

    Get PDF
    Long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are essential components of biomembranes, particularly in neural tissues. Endogenous synthesis of ARA, EPA and DHA occurs from precursor dietary essential fatty acids such as linoleic and α-linolenic acid through elongation and Δ5 and Δ6 desaturations. With respect to desaturation activities some noteworthy differences have been noted in vertebrate classes. In mammals, the Δ5 activity is allocated to the Fads1 gene, while Fads2 is a Δ6 desaturase. In contrast, teleosts show distinct combinations of desaturase activities (e.g. bifunctional or separate Δ5 and Δ6 desaturases) apparently allocated to Fads2-type genes. To determine the timing of Fads1-Δ5 and Fads2-Δ6 evolution in vertebrates we used a combination of comparative and functional genomics with the analysis of key phylogenetic species. Our data show that Fads1 and Fads2 genes with Δ5 and Δ6 activities respectively, evolved before gnathostome radiation, since the catshark Scyliorhinus canicula has functional orthologues of both gene families. Consequently, the loss of Fads1 in teleosts is a secondary episode, while the existence of Δ5 activities in the same group most likely occurred through independent mutations into Fads2 type genes. Unexpectedly, we also establish that events of Fads1 gene expansion have taken place in birds and reptiles. Finally, a fourth Fads gene (Fads4) was found with an exclusive occurrence in mammalian genomes. Our findings enlighten the history of a crucially important gene family in vertebrate fatty acid metabolism and physiology and provide an explanation of how observed lineage-specific gene duplications, losses and diversifications might be linked to habitat-specific food web structures in different environments and over geological timescales

    Effects of Protein Deficiency on Perinatal and Postnatal Health Outcomes

    Get PDF
    There are a variety of environmental insults that can occur during pregnancy which cause low birth weight and poor fetal health outcomes. One such insult is maternal malnutrition, which can be further narrowed down to a low protein diet during gestation. Studies show that perinatal protein deficiencies can impair proper organ growth and development, leading to long-term metabolic dysfunction. Understanding the molecular mechanisms that underlie how this deficiency leads to adverse developmental outcomes is essential for establishing better therapeuticstrategies that may alleviate or prevent diseases in later life. This chapter reviews how perinatal protein restriction in humans and animals leads to metabolic disease, and it identifies the mechanisms that have been elucidated, to date. These include alterations in transcriptional and epigenetic mechanisms, as well as indirect means such as endoplasmic reticulum (ER) stress and oxidative stress. Furthermore, nutritional and pharmaceutical interventions are highlighted to illustrate that the plasticity of the underdeveloped organs during perinatal life can be exploited to prevent onset of long-term metabolic disease

    Early life exposure to the 1918 influenza pandemic and old-age mortality by cause of death

    No full text
    Objectives. We sought to analyze how early exposure to the 1918 influenza pandemic is associated with old-age mortality by cause of death. Methods. We analyzed the National Health Interview Survey (n = 81 571; follow-up 1989–2006; 43 808 deaths) and used year and quarter of birth to assess timing of pandemic exposure. We used Cox proportional and Fine-Gray competing hazard models for all-cause and cause-specific mortality, respectively. Results. Cohorts born during pandemic peaks had excess all-cause mortality attributed to increased noncancer mortality. We found evidence for a trade-off between noncancer and cancer causes: cohorts with high noncancer mortality had low cancer mortality, and vice versa. Conclusions. Early disease exposure increases old-age mortality through noncancer causes, which include respiratory and cardiovascular diseases, and may trigger a trade-off in the risk of cancer and noncancer causes. Potential mechanisms include inflammation or apoptosis. The findings contribute to our understanding of the causes of death behind the early disease exposure–later mortality association. The cancer–noncancer trade-off is potentially important for understanding the mechanisms behind these associations
    corecore