107 research outputs found
Fine Mapping of the Psoriasis Susceptibility Locus PSORS1 Supports HLA-C as the Susceptibility Gene in the Han Chinese Population
PSORS1 (psoriasis susceptibility gene 1) is a major susceptibility locus for psoriasis. Several fine-mapping studies have highlighted a 300-kb candidate region of PSORS1 where multiple biologically plausible candidate genes were suggested. The most recent study has indicated HLA-Cw6 as the primary PSORS1 risk allele within the candidate region in a Caucasian population. In this study, a family-based association analysis of the PSORS1 locus was performed by analyzing 10 polymorphic microsatellite markers from the PSORS1 region as well as HLA-B, HLA-C and CDSN loci in 163 Chinese families of psoriasis. Five marker loci show strong evidence (P<10−3), and one marker locus shows weak evidence (P = 0.04) for association. The haplotype cluster analysis showed that all the risk haplotypes are Cw6 positive and share a 369-kb region of homologous marker alleles which carries all the risk alleles, including HLA-Cw6 and CDSN*TTC, identified in this study. The recombinant haplotype analysis of the HLA-Cw6 and CDSN*TTC alleles in 228 Chinese families showed that the HLA-Cw6−/CDSN*TTC+ recombinant haplotype is clearly not associated with risk for psoriasis (T∶NT = 29:57, p = 0.0025) in a Chinese population, suggesting that the CDSN*TTC allele itself does not confer risk without the presence of the HLA-Cw6 allele. The further exclusion analysis of the non-risk HLA-Cw6−/CDSN*TTC+ recombinant haplotypes with common recombination breakpoints has allowed us to refine the location of PSORS1 to a small candidate region. Finally, we performed a conditional linkage analysis and showed that the HLA-Cw6 is a major risk allele but does not explain the full linkage evidence of the PSORS1 locus in a Chinese population. By performing a series of family-based association analyses of haplotypes as well as an exclusion analysis of recombinant haplotypes, we were able to refine the PSORS1 gene to a small critical region where HLA-C is a strong candidate to be the PSORS1 susceptibility gene
Topoisomerase IIβ Activates a Subset of Neuronal Genes that Are Repressed in AT-Rich Genomic Environment
DNA topoisomerase II (topo II) catalyzes a strand passage reaction in that one duplex is passed through a transient brake or gate in another. Completion of late stages of neuronal development depends on the presence of active β isoform (topo IIβ). The enzyme appears to aid the transcriptional induction of a limited number of genes essential for neuronal maturation. However, this selectivity and underlying molecular mechanism remains unknown. Here we show a strong correlation between the genomic location of topo IIβ action sites and the genes it regulates. These genes, termed group A1, are functionally biased towards membrane proteins with ion channel, transporter, or receptor activities. Significant proportions of them encode long transcripts and are juxtaposed to a long AT-rich intergenic region (termed LAIR). We mapped genomic sites directly targeted by topo IIβ using a functional immunoprecipitation strategy. These sites can be classified into two distinct classes with discrete local GC contents. One of the classes, termed c2, appears to involve a strand passage event between distant segments of genomic DNA. The c2 sites are concentrated both in A1 gene boundaries and the adjacent LAIR, suggesting a direct link between the action sites and the transcriptional activation. A higher-order chromatin structure associated with AT richness and gene poorness is likely to serve as a silencer of gene expression, which is abrogated by topo IIβ releasing nearby genes from repression. Positioning of these genes and their control machinery may have developed recently in vertebrate evolution to support higher functions of central nervous system
A multivariate logistic regression equation to screen for dysglycaemia: development and validation
Aims To develop and validate an empirical equation to screen for dysglycaemia [impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and undiagnosed diabetes]. Methods A predictive equation was developed using multiple logistic regression analysis and data collected from 1032 Egyptian subjects with no history of diabetes. The equation incorporated age, sex, body mass index (BMI), post-prandial time (self-reported number of hours since last food or drink other than water), systolic blood pressure, high-density lipoprotein (HDL) cholesterol and random capillary plasma glucose as independent covariates for prediction of dysglycaemia based on fasting plasma glucose (FPG) ≥ 6.1 mmol/l and/or plasma glucose 2 h after a 75-g oral glucose load (2-h PG) ≥ 7.8 mmol/l. The equation was validated using a cross-validation procedure. Its performance was also compared with static plasma glucose cut-points for dysglycaemia screening. Results The predictive equation was calculated with the following logistic regression parameters: P = 1 + 1/(1 + e −X ) = where X = −8.3390 + 0.0214 (age in years) + 0.6764 (if female) + 0.0335 (BMI in kg/m 2 ) + 0.0934 (post-prandial time in hours) + 0.0141 (systolic blood pressure in mmHg) − 0.0110 (HDL in mmol/l) + 0.0243 (random capillary plasma glucose in mmol/l). The cut-point for the prediction of dysglycaemia was defined as a probability ≥ 0.38. The equation's sensitivity was 55%, specificity 90% and positive predictive value (PPV) 65%. When applied to a new sample, the equation's sensitivity was 53%, specificity 89% and PPV 63%. Conclusions This multivariate logistic equation improves on currently recommended methods of screening for dysglycaemia and can be easily implemented in a clinical setting using readily available clinical and non-fasting laboratory data and an inexpensive hand-held programmable calculator. Diabet. Med. 22, 599–605 (2005)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75603/1/j.1464-5491.2005.01467.x.pd
Modification of the L1-CAM carboxy-terminus in pancreatic adenocarcinoma cells
The neural cell adhesion molecule L1 has recently been shown to be expressed in pancreatic adenocarcinoma (PDAC) cells. In this report, we demonstrate that L1 is expressed by moderately- to poorly-differentiated PDAC cells in situ, and that L1 expression is a predictor of poor patient survival. In vitro, reduced reactivity of an anti-L1 carboxy-terminus-specific antibody was observed in the more poorly differentiated fast-growing (FG) variant of the COLO357 population, versus its well-differentiated slow-growing (SG) counterpart, even though they express equivalent total L1. The carboxy-terminus of L1 mediates binding to the MAP kinase-regulating protein RanBPM and mutation of T1247/S1248 within this region attenuates the expression of malignancy associated proteins and L1-induced tumorigenicity in mice. Therefore, we reasoned that the differential epitope exposure observed might be indicative of modifications responsible for regulating these events. However, epitope mapping demonstrated that the major determinant of binding was actually N1251; mutation of T1247 and S1248, alone or together, had little effect on C20 binding. Moreover, cluster assays using CD25 ectodomain/L1 cytoplasmic domain chimeras demonstrated the N1251-dependent, RanBPM-independent stimulation of erk phosphorylation in these cells. Reactivity of this antibody also reflects the differential exposure of extracellular epitopes in these COLO357 sublines, consistent with the previous demonstration of L1 ectodomain conformation modulation by intracellular modifications. These data further support a central role for L1 in PDAC, and define a specific role for carboxy-terminal residues including N1251 in the regulation of L1 activity in PDAC cells
Psoriasis Regression Analysis of MHC Loci Identifies Shared Genetic Variants with Vitiligo
Psoriasis is a common inflammatory skin disease with genetic components of both immune system and the epidermis. PSOR1 locus (6q21) has been strongly associated with psoriasis; however, it is difficult to identify additional independent association due to strong linkage disequilibrium in the MHC region. We performed stepwise regression analyses of more than 3,000 SNPs in the MHC region genotyped using Human 610-Quad (Illumina) in 1,139 cases with psoriasis and 1,132 controls of Han Chinese population to search for additional independent association. With four regression models obtained, two SNPs rs9468925 in HLA-C/HLA-B and rs2858881 in HLA-DQA2 were repeatedly selected in all models, suggesting that multiple loci outside PSOR1 locus were associated with psoriasis. More importantly we find that rs9468925 in HLA-C/HLA-B is associated with both psoriasis and vitiligo, providing first important evidence that two major skin diseases share a common genetic locus in the MHC, and a basis for elucidating the molecular mechanism of skin disorders
Simulated Microgravity Compromises Mouse Oocyte Maturation by Disrupting Meiotic Spindle Organization and Inducing Cytoplasmic Blebbing
In the present study, we discovered that mouse oocyte maturation was inhibited by simulated microgravity via disturbing spindle organization. We cultured mouse oocytes under microgravity condition simulated by NASA's rotary cell culture system, examined the maturation rate and observed the spindle morphology (organization of cytoskeleton) during the mouse oocytes meiotic maturation. While the rate of germinal vesicle breakdown did not differ between 1 g gravity and simulated microgravity, rate of oocyte maturation decreased significantly in simulated microgravity. The rate of maturation was 8.94% in simulated microgravity and was 73.0% in 1 g gravity. The results show that the maturation of mouse oocytes in vitro was inhibited by the simulated microgravity. The spindle morphology observation shows that the microtubules and chromosomes can not form a complete spindle during oocyte meiotic maturation under simulated microgravity. And the disorder of γ-tubulin may partially result in disorganization of microtubules under simulated microgravity. These observations suggest that the meiotic spindle organization is gravity dependent. Although the spindle organization was disrupted by simulated microgravity, the function and organization of microfilaments were not pronouncedly affected by simulated microgravity. And we found that simulated microgravity induced oocytes cytoplasmic blebbing via an unknown mechanism. Transmission electron microscope detection showed that the components of the blebs were identified with the cytoplasm. Collectively, these results indicated that the simulated microgravity inhibits mouse oocyte maturation via disturbing spindle organization and inducing cytoplasmic blebbing
Screening for multi-drug-resistant Gram-negative bacteria: what is effective and justifiable?
Effectiveness is a key criterion in assessing the justification of antibiotic resistance interventions. Depending on an intervention's effectiveness, burdens and costs will be more or less justified, which is especially important for large scale population-level interventions with high running costs and pronounced risks to individuals in terms of wellbeing, integrity and autonomy. In this paper, we assess the case of routine hospital screening for multi-drug-resistant Gram-negative bacteria (MDRGN) from this perspective. Utilizing a comparison to screening programs for Methicillin-Resistant Staphylococcus aureus (MRSA) we argue that current screening programmes for MDRGN in low endemic settings should be reconsidered, as its effectiveness is in doubt, while general downsides to screening programs remain. To accomplish justifiable antibiotic stewardship, MDRGN screening should not be viewed as a separate measure, but rather as part of a comprehensive approach. The program should be redesigned to focus on those at risk of developing symptomatic infections with MDRGN rather than merely detecting those colonised
Vegan diets : practical advice for athletes and exercisers.
With the growth of social media as a platform to share information, veganism is becoming more visible, and could be becoming more accepted in sports and in the health and fitness industry. However, to date, there appears to be a lack of literature that discusses how to manage vegan diets for athletic purposes. This article attempted to review literature in order to provide recommendations for how to construct a vegan diet for athletes and exercisers. While little data could be found in the sports nutrition literature specifically, it was revealed elsewhere that veganism creates challenges that need to be accounted for when designing a nutritious diet. This included the sufficiency of energy and protein; the adequacy of vitamin B12, iron, zinc, calcium, iodine and vitamin D; and the lack of the long-chain n-3 fatty acids EPA and DHA in most plant-based sources. However, via the strategic management of food and appropriate supplementation, it is the contention of this article that a nutritive vegan diet can be designed to achieve the dietary needs of most athletes satisfactorily. Further, it was suggested here that creatine and β-alanine supplementation might be of particular use to vegan athletes, owing to vegetarian diets promoting lower muscle creatine and lower muscle carnosine levels in consumers. Empirical research is needed to examine the effects of vegan diets in athletic populations however, especially if this movement grows in popularity, to ensure that the health and performance of athletic vegans is optimised in accordance with developments in sports nutrition knowledge
The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
- …