209 research outputs found

    Design and characterisation of metallic glassy alloys of high neutron shielding capability

    Get PDF
    This paper reports the design, making and characterisation of a series of Fe-based bulk metallic glass alloys with the aim of achieving the combined properties of high neutron absorption capability and sufficient glass forming ability. Synchrotron X-ray diffraction and pair distribution function methods were used to characterise the crystalline or amorphous states of the samples. Neutron transmission and macroscopic attenuation coefficients of the designed alloys were measured using energy resolved neutron imaging method and the very recently developed microchannel plate detector. The study found that the newly designed alloy (Fe48Cr15Mo14C15B6Gd2 with a glass forming ability of Ø5.8 mm) has the highest neutron absorption capability among all Fe-based bulk metallic glasses so far reported. It is a promising material for neutron shielding applications

    Modelling of an imaging beamline at the ISIS pulsed neutron source

    Get PDF
    A combined neutron imaging and neutron diffraction facility, IMAT, is currently being built at the pulsed neutron spallation source ISIS in the U.K. A supermirror neutron guide is required to combine imaging and diffraction modes at the sample position in order to obtain suitable time of flight resolutions for energy selective imaging and diffraction experiments. IMAT will make use of a straight neutron guide and we consider here the optimization of the supermirror guide dimensions and characterisation of the resulting beam characteristics, including the homogeneity of the flux distribution in space and energy and the average and peak neutron fluxes. These investigations take into account some main design criteria: to maximise the neutron flux, to minimise geometrical artefacts in the open beam image at the sample position and to obtain a good energy resolution whilst retaining a large neutron bandwidth. All of these are desirable beam characteristics for the proposed imaging and diffraction analysis modes of IMAT

    Recovering the second moment of the strain distribution from neutron Bragg edge data

    Get PDF
    Point by point strain scanning is often used to map the residual stress (strain) in engineering materials and components. However, the gauge volume and hence spatial resolution is limited by the beam defining apertures and can be anisotropic for very low and high diffraction (scattering) angles. Alternatively, wavelength resolved neutron transmission imaging has a potential to retrieve information tomographically about residual strain induced within materials through measurement in transmission of Bragg edges - crystallographic fingerprints whose locations and shapes depend on microstructure and strain distribution. In such a case the spatial resolution is determined by the geometrical blurring of the measurement setup and the detector point spread function. Mathematically, reconstruction of strain tensor field is described by the longitudinal ray transform; this transform has a non-trivial null-space, making direct inversion impossible. A combination of the longitudinal ray transform with physical constraints was used to reconstruct strain tensor fields in convex objects. To relax physical constraints and generalise reconstruction, a recently introduced concept of histogram tomography can be employed. Histogram tomography relies on our ability to resolve the distribution of strain in the beam direction, as we discuss in the paper. More specifically, Bragg edge strain tomography requires extraction of the second moment (variance about zero) of the strain distribution which has not yet been demonstrated in practice. In this paper we verify experimentally that the second moment can be reliably measured for a previously well characterised aluminium ring and plug sample. We compare experimental measurements against numerical calculation and further support our conclusions by rigorous uncertainty quantification of the estimated mean and variance of the strain distribution

    Investigating root architectural differences in lines of Arabidopsis thaliana. L. with altered stomatal density using high resolution X-Ray synchrotron imaging

    Get PDF
    Purpose Freshwater is an increasingly scarce natural resource, essential for agricultural production. As plants consume 70% of the world’s freshwater, a reduction in their water use would greatly reduce global water scarcity. Plants with improved Water Use Efficiency (WUE) such as those with altered expression of the Epidermal Patterning Factor (EPF) family of genes regulating stomatal density, could help reduce plant water footprint. Little however, is known about how this modification in Arabidopsis thaliana. L. affects root architectural development in soil, thus we aim to improve our understanding of root growth when stomatal density is altered. Methods We used X-Ray synchrotron and neutron imaging to measure in three dimensions, the root system architecture (RSA) of Arabidopsis thaliana. L. plants of three different genotypes, namely that of the wild type Columbia (Col 0) and two different EPF mutants, EPF2OE and epf2-1 (which show reduced and increased stomatal density, respectively). We also used the total biomass and carbon isotope discrimination (Δ) methods to determine how WUE varies in these genotypes when grown in a sandy loam soil under controlled conditions. Results Our results confirm that the EPF2OE line had superior WUE as compared to the wild type using both the Δ and total biomass method. The epf2-1 mutant, on the other hand, had significantly reduced WUE using the Δ but not with the biomass method. In terms of root growth, the RSAs of the different genotypes had no significant difference between each other. There was also no significant difference in rhizosphere porosity around their roots as compared to bulk soil for all genotypes. Conclusion Our results indicate that the EPF mutation altering stomatal density in Arabidopsis thaliana. L. plants did not have an adverse effect on root characteristics thus their wide adoption to reduce the global freshwater footprint is unlikely to compromise their soil foraging ability

    Controlled environment neutron radiography of moisture sorption/desorption in nanocellulose-treated cotton painting canvases

    Get PDF
    Nanocellulose-based materials have recently been used to consolidate degraded cotton painting canvases. Canvas-supported paintings consist of materials that are sensitive to moisture and especially susceptible to environmental fluctuations in temperature and relative humidity (RH). These environmental fluctuations occur in uncontrolled environments found in historic houses and palaces and can lead to hydrolytic degradation and mechanical damage to canvases. To simulate this situation in an experimental setting, canvas samples were mounted in a custom-made closed-cell and subjected to programmed cycles of RH at a controlled temperature while exposed to the neutron beam. Results are presented for both untreated samples and those treated with a polar consolidant, cellulose nanofibrils (CNF(aq)) in water, and an apolar consolidant, a composite of persilylated methyl cellulose with surface silylated cellulose nanocrystals (MC+CNC(h)) in heptane. They were then compared with changes in ionic conductivities as measured by dielectric analysis (DEA) with the same cyclic RH program and temperature. Although the samples were exposed to the same experimental conditions, they presented treatment-specific responses. CNF-treated canvas showed higher hygroscopicity than the untreated sample and facilitated moisture diffusion across the sample to areas not exposed to the environment. A sample treated with MC+CNC(h) retarded moisture diffusion during the increase in RH and could, therefore, afford protection to moisture absorption in uncontrolled environments. Thus, the experimental setup and resulting data provide a pilot study demonstrating the potential of neutron radiography in following and comparing real-time moisture diffusion dynamics in untreated and nanocellulose-consolidated cotton canvases and assisting in validating the overall benefit of the treatmen

    In Search of New Imaging For Historical Earthquakes: A New Geophysical Survey Offshore Western Calabria (Southern Tyrrhenian Sea, Italy)

    Get PDF
    During the summer of 2010 we carried out a survey to acquire a multidisciplinary dataset within the Gulf of Sant'Eufemia (SE Tyrrhenian sea, Italy), with the aim of studying the active tectonics affecting the region, including that potentially responsible for key, elusive earthquakes such as the to-date unexplained 8 September 1905 (Mw 7 - 7.5) earthquake. The data here analysed highlight the presence of several tectonic and morphologic features characterizing the investigated area. We have recognized the Angitola Channel, a deep and wide canyon showing a straight trend in its coastward segment, and a meandering trend in the seaward segment. Based on morpho-structural elements, we maintain that the Angitola Channel could be tectonically controlled. Moreover, several gravitational instabilities as slumps and collapses affect the flanks of the morpho-structural high, detected offshore Capo Vaticano. Very high resolution seismic data have unveiled the presence of numerous fluid escape features and several mud volcanoes straddling the sector from the coastline to seaward.INOGS (RIMA Department) supported the acquisition of the entire dataset.Published385-4013.2. Tettonica attivaJCR Journalrestricte
    corecore