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Abstract

Point by point strain scanning is often used to map the residual stress (strain) in engineering
materials and components. However, the gauge volume and hence spatial resolution is limited by
the beam defining apertures and can be anisotropic for very low and high diffraction (scattering)
angles. Alternatively, wavelength resolved neutron transmission imaging has a potential to retrieve
information tomographically about residual strain induced within materials through measurement
in transmission of Bragg edges 7 crystallographic fingerprints whose locations and shapes depend
on microstructure and strain distribution. In such a case the spatial resolution is determined
by the geometrical blurring of the measurement setup and the detector point spread function.
Mathematically, reconstruction of strain tensor field is described by the longitudinal ray transform;
this transform has a non-trivial null-space, making direct inversion impossible. A combination of
the longitudinal ray transform with physical constraints was used to reconstruct strain tensor fields
in convex objects. To relax physical constraints and generalise reconstruction, a recently introduced
concept of histogram tomography can be employed. Histogram tomography relies on our ability to
resolve the distribution of strain in the beam direction, as we discuss in the paper. More specifically,
Bragg edge strain tomography requires extraction of the second moment (variance about zero)
of the strain distribution which has not yet been demonstrated in practice. In this paper we
verify experimentally that the second moment can be reliably measured for a previously well
characterised aluminium ring and plug sample. We compare experimental measurements against
numerical calculation and further support our conclusions by rigorous uncertainty quantification
of the estimated mean and variance of the strain distribution.
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Residual stress (and thereby elastic strain) is the stress that remains in a body when no external
forces are applied [1]. Because these internal stresses add to those arising from externally applied loads,
if they are not detected they can give rise to unexpected behaviours and premature failure. There-
fore, information about the strain measured within polycrystalline materials is critically important for
understanding the deformation and fracture mechanics of engineered components. A well-established
technique used for strain measurements is based on neutron diffraction (or Bragg scattering). De-
pending on the material, the scattered neutrons will constructively interfere with each other only in
particular directions and produce a intensity pattern (so-called Bragg peaks) from which the structure
of the material is derived. Measurement of the position of Bragg peaks from diffraction allows the
determination of lattice spacings, while the measurement of the relative shift in the positions provides
information on lattice strains [2]. To achieve high spatial resolution a sample is raster scanned with a
collimated or focused beam and the angle of scattered beam 20 (e.g. angle-dispersive diffraction) or
wavelength/ energy (e.g. energy-dispersive diffraction) is recorded to deduce the interplanar spacing,
point by point, using Bragg’s equation. This is then used to infer strain based on a comparison with
the reference interplanar spacing. To overcome some of the disadvantages given by neutron diffraction
measurements (e.g. slow acquisition, the uncertainty of the exact specimen or gauge location along
the beam [3]) a new technique called Bragg edge neutron transmission for strain measurements was
proposed and demonstrated|4, 5].

In this respect, a polychromatic neutron beam in a combination with a Time-of-Flight (ToF)
area detector can be employed to register both spatial and ToF (wavelength) information about the
transmitted neutrons. According to Bragg’s law

2dpr sin € = App, (1)

coherent elastic scattering at an incident angle of # can happen only for wavelengths A shorter than
twice the spacing between the lattice planes (dpr;). Hence, the transmitted spectrum will exhibit a
rapid increase in the transmitted intensity at a wavelength A slightly longer than twice this distance
because intensity can no longer be diffracted out of the transmitted beam by this hkl family of planes.
This sharp change in transmission is called a Bragg edge and allows the establishment of a relationship
between the transmitted neutron spectral fingerprint and the crystallographic phases in the material.
The application of the Bragg edge neutron transmission for strain mapping has been recently extended
to high spatial resolutions due to advances in micro-channel-plate (MCP) detector technology [6, 7].
Given a sample rotation, a strain tensor field in the object can be reconstructed tomographically (in
general, rotations about six directions that do not lie on a projective conic are required to reconstruct
tensor field [3]). This technique is referred to as Bragg edge strain tomography and seeks to determine
the spatial distribution of strain inside a polycrystalline sample from the change in the neutron trans-
mission spectra near a Bragg edge [9, 3, 10, 8, 11]. Given ideal conditions and a uniformly strained
material, the Bragg edge can be modelled as a Heaviside function multiplied by a linear function of
wavelength [12]. The result of this uniform strain is to shift the relative position (mean) of the Bragg
edge with respect to that for a sample without strain present. However, the mean cannot provide
sufficient information to resolve the strain distribution along the ray path [8], i.e. there are infinitely
many distributions of the strain fields along the beam path which will produce the same mean. This
problem is related to a non-trivial null-space of the longitudinal ray transform, which gives a mathe-
matical foundation for Bragg edge strain tomography [3], i.e., the mean measurements do not uniquely
determine strain tensor fields. To overcome this problem, tomographic data can be combined with
equilibrium equations of elasticity using a finite element approach to find the strain [11]. Alternatively,
Lionheart [12] observed that an experimentally measured Bragg edge is representative of the cumula-
tive strain histogram along a neutron ray within the material. Hence, differentiation of the Bragg edge
will theoretically return the histogram of strain, i.e., the distribution of strain components collinear
with the ray disctretized into bins. The shape of the histogram is the convolution of the histogram
for the unstrained case with the histogram of the relevant component of strain along the beam, and
the second moment of the deconvolved histogram is the ray transform of the symmetric second tensor
power of the strain. Hence, the histogram longitudinal ray transform [12] can be used to reconstruct
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Figure 1: a) VAMAS round robin shrink fitted aluminium ring-and-plug and plug test samples (figure taken
from the VAMAS report [16]). b) €. component of the strain tensor scaled by sin® ¢. c) €go component of the
strain tensor scaled by cos? . d) Plot of the expected strain (e = egg cos® ¢ + €, sin’ ¢) within the strained
sample for a ray path indicated by the arrow above the figure.

the strain tensor in every voxel. The proposed theoretical method relies on our ability to measure the
second moment of the strain distribution in transmission (projection) data which has not yet been
demonstrated in practice.

In this paper, we demonstrate that the second moment, the variance about zero, of strain in the
ray direction can be captured experimentally. We present an analysis of two reference samples (Fig. 1,
a) manufactured within the Versailles Project on Advanced Materials and Standards (VAMAS) [13].
The first sample is a shrink-fit aluminium alloy assembly of ring and plug (henceforth the strained
sample). The ring and the plug have outer diameters of 50 mm and 25 mm, respectively. The second
sample is an unstained plug of the same diameter (henceforth the strain-free sample). Both samples
were manufactured under well controlled conditions, are of weak crystallographic texture and low
residual stress prior to assembly. In addition they have been extremely well characterised in a global
round-robin study [14].

In order to compare experimental measurements with theoretical predictions, we briefly recall some
details about the expected strain in the strained sample. The axial stress of the plug, ¢%,, the ring
oL,, and the interface pressure, P, have been determined in a series of neutron diffraction strain
experiments [141] and have been found to be -15 MPa, 5 MPa and 48 MPa, respectively. The values
of Poisson’s ratio, v, and the Young’s modulus, F, of the material were taken to be 0.33 and 68 GPa,
respectively. The radial and hoop strain can be obtained via solving the governing equations of linear
elastic theory [15]. Assuming that the axis of the cylinder is perpendicular to the direction of travel of
the sufficiently parallel neutron beam, the strain along the ray path, ¢, is related to the radial (e,,) and
hoop (€pg) components of strain via € = €., sin? ¢ + epg cos? ¢, where ¢ is the angle anticlockwise from
the neutron direction of travel. We will refer to the resulting distribution of strain as the projected
strain. We discretise the analytical strain map onto the experimental detector grid and sample from
this array to calculate the first and the second moments of the distribution along the ray path. Fig 1,
b-d shows the individual contour maps of the two calculated components of strain and their sum.

The sample was measured [17] at the Imaging and Materials Science & Engineering (IMAT) beam-
line operating at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK) [18, 19].
At a pulsed neutron source, the wavelengths of the detected neutrons are calculated from their time

of flight by
h(T + AT
A= M+ ATo) (2)
mL
where X is the neutron wavelength (in meters), h is Planck’s constant, 7' is the neutron time of flight
(in seconds), ATy is the time offset of the source trigger received by the data processing electronics (in

seconds), m is the neutron mass (in kilograms), and L is the flight path from source to the detector (in



meters). The MCP detector [20, 6] used for the experiment was configured to record 2897 wavelength
channels between 3.12 A and 5.12 A giving access to lattice planes from 1.56 A to 2.56 A in d-spacing,
which for aluminum are the 111 and 200 lattice planes. To reduce the undesirable effect of counts
loss [21], two shutter intervals were set in the ToF (wavelength) domain with resolution 7.21-10~* A
and 3.60-10~* A, respectively. The MCP detector has 512 x 512 pixels, 0.055 mm pixel size, giving a
field of view of approximately 28 x 28 mm?. A visible laser beam was used to align the cylinder axis
of the sample with respect to the vertical edge of the detector and to ensure that the plug, the ring
and their interface are in the field-of-view (Fig. 2, a). Subsequently, the strain-free reference sample
was aligned and centered vertically and measured.

Individual projections of samples and a single normalisation image were measured using 4 hours
long exposures. Flat-field and MCP detector related corrections [21] were adapted from BEAn [22]
and applied to the projections. As the strained sample is axially symmetric, of weak crystallographic
texture and only a radial-hoop internal stress exists, we assume that the strain does not vary along the
cylinder axis. Consequently, we sum over each vertical column of pixels to improve the signal-to-noise
ratio. Such aggregated pixels are commonly referred to as macro-pizels.

Given the measured wavelength range, two distinct Bragg edges were present in the acquired
spectra, A &~ 4.0 A (200 lattice planes), and A ~ 4.7 A (111 lattice planes), with the latter one more
pronounced and also sampled with higher wavelength resolution (Fig. 2, b). Therefore we performed
analysis only for the latter edge. To model the transmission spectra around the Bragg edge we used
the Santisteban function [23]

Tr(A, ¢) = exp(—(ao + boA))(1 — exp(—(a1 + b1A))) B(A) (3)

where A is the experimentally acquired transmission signal measured in Aand ¢ = (ag,bo, a1, by) is a
vector of the model parameters.

Here, ag,bo and aq,b; describe the exponential attenuation to the right (tail) and to the left
(pedestal) of the Bragg-edge, respectively, and B(A) is given by

1 A — Apw A= Dp 0 A=Dpp o
B(A):i[erfc <—\/§0-> — exp (_T+27—2 Xerfc —W—‘r; :|

where Apy; is the position of the Bragg-edge, 7 is the moderator decay constant, and o is the Gaussian
broadening due to the sample and instrument. See the supplementary material for derivation of the
model.

The model [23] was not explicitly derived to account for strain but rather to model blur in the
wavelength dimension due to the stochastic nature of neutron moderation and the geometric effects
of the beamline [24, 25]. Nevertheless the sensitivity of the model to strain has been demonstrated in
several studies [26, 27, 28, 29].

We used the non-linear least square fitting (Levenberg?Marquardt algorithm) to fit the model
function (eq. 3) and estimate parameters. To avoid the local minimum problem common to the non-
linear fitting, we employ a three stage fitting process [23]. An example of a measured Bragg edge
overlaid with the fitted model function is shown in Fig. 2, c.

The first moment (mean) of the projected strain is given by [30]:

s _ 0
(&) = w )
hkl

where )\2 o and A7, are the position of Bragg edge for the strain-free sample and the strained sample,
respectively.

Our strategy for the measurement of the second moment (variance about zero) is as follows. The
value of the moderator decay constant, 7, is a function of the geometry and temperature of the
moderator used in the experiment [22]; as these parameters remained approximately constant within
the experiment, 7 is expected to be constant. Parameter o is a function of width of the initial pulse
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Figure 2: a) Scheme illustrating experimental data acquisition. b) Plot showing the transmission of neutrons
(%) in a single macro-pixel as a function of wavelength for both samples. Both curves are plotted with the same
vertical axis. As samples have different diameters and have been positioned slightly differently (translationally),
a pixel with the same index in both transmission images will correspond to a different penetration length
through the material, hence, intensity. Therefore there is a vertical offset between the two plotted curves. A
gap in the recorded spectra is caused by detector readout between two shutter intervals. ¢) Measured Bragg
edge in a single macro-pixel overlaid with the fitted model function.

from the moderator and sample-related broadening [31]. As the shape of the pulse is expected to be
repeatable and uniform in the spatial dimension, any spatial change in ¢ can be attributed to the
change in variance of strain in the beam direction. Although o in eq. 3 captures broadening of the
Bragg edge, we need to establish a relationship between an instrument response and the variance of
strain along a beam direction. Assuming a linear relationship, the model of measurements is given
by y = mx + ¢, where x = [zg,%1,...,2j_1] is a vector of the theoretically predicted variance of
strain in the beam direction at detector macro-pixel j between 0 and 511 and y = [0¢,01,...,0j_1] is
experimentally measured o at each macro-pixel j. We use linear regression to define parameters m and
c. Obviously, this simple proof-of-concept measurement model cannot substitute a proper instrument
scale calibration necessary to establish this tomographic measurement technique.

To support our findings, we perform uncertainty quantification based on Bayesian interference [32].
In the Bayesian framework, the measurement model is represented as a joint probability distribution
of unknown parameters 1 and observations Y

_ w(¥ ()
w(nly) = T, (%)

where 7(Y|n) is the likelihood function of n, i.e., the predictive distribution of Y, given 1. The prior
distribution 7(n) encodes the prior knowledge and model assumptions. The model evidence m(Y) maps
the likelihood, prior and observations to a single value that describes the probability of observation.
Finally, 7(n|Y) is the posterior probability: the probability of i after Y is observed.

The mean of the likelihood is given by the parametric model for each data point. Let j between 0 and
511 denote the position of a column of pixels and [Y;]. = Y()\;); be the mean measured transmission
for wavelength bin 4 in pixel column j. We model the transmission error over a macro-pixel as additive
Gaussian noise with zero mean and a variance that is linearly dependent on the transmission [30].
Then,

Y(Ai)j = Tr(Ailyp;) + £(wlAi, j), (6)

where &(w|A;, j) is a Gaussian random variable

E(wlAi; 5) ~ N(0,5(M)3), (7)



and s()\l)f is the unbiased estimate of the sample variance. Then, the likelihood 7(Y|n) is given by

(Y (Ni)jl9;) = m(€(wlhis §) = Y(Ai); — Tr(Ailp;)) (8)
ocesp (=31 YO, ~ T, 0

where || - |2 is the covariance-weighted norm. Finally, we converge to
T(Y(A)jlp,) = exp ( > ﬁ (Yo - Tr(Amp)Q) . (10)

The prior distributions on the parameters of the model ¢; are assumed to be weakly informative
(wide peak) Gaussian’s centered at the best estimates obtained from the Levenberg-Marquardt fit for
each parameter. We further use the Hamiltonian Monte Carlo (HMC) [33] method to sample from the
posterior distribution. Bayesian interference and HMC are implemented using the Python wrapper
PySTAN for the probabilistic programming framework STAN.

Fig. 3 compares a maximum a posteriori probability (MAP) estimation of the mean and second
moment obtained from the experimental data. Overlaid we plot a confidence interval of two standard
deviations of the distribution. For the strain-free case, parameter o is expected to be constant but
greater than 0 as o also models blur in the wavelength dimension. Therefore the theoretical predictions
are given by the best linear fit to estimated data. Theoretical predictions for the strained sample are
given by our calculations in fig. 1, d which were scaled linearly to best match data. It can clearly
be seen that both mean and variance are within the uncertainty interval for both samples and and
the main trends are captured. However there is strong noise present in all estimated parameters and
for some data points the MAP estimate of the second moment is 0 and the 95% confidence interval
includes negative values. There are several reasons for the observed behaviours.

Following Hendriks et al. [30], we assumed Gaussian noise in the measured transmission data. In
fig. 4 we show the distribution of error in some representative macro-pixels overlaid with the fitted
Gaussian probability density function. While the distributions have a clear bell-shape, they are also
skewed towards negative values. Conducting a combined D?Agostino and Pearson?s omnibus test [34]
with a significance level of o = 0.001 showed that of the 741,376 distributions considered 690,688 have
enough evidence to reject the hypothesis that the data was drawn from a Gaussian distribution. The
reason for this skew might be the overlap correction [21] used to compensate for counts loss. The
correction relies on Poisson statistics and the weighting factor for each wavelength bin is calculated
based on values in shorter wavelength bins introducing inter-bin correlations and potentially a skew in
the data.

The Santisteban model [23] was not designed to account for strain and the parameter o, which
was used in this study as a measure of strain variance, does not have any physical meaning in the
model. Secondly, the model assumes the Gaussian distribution of strain. In fig. 5 we show a posterior
distribution of o for both samples. For the strained sample we chose a data point where the fitting
resulted in 0 = 0. The posterior distribution is concentrated at o = 0, consistent with the least-square
fit. For the strain-free sample, the posterior distribution is multimodal with two pronounced peaks.
Both distributions highlight inadequacy of the Santisteban model for uniquely identifying the second
moment of the strain distribution. Therefore, more research is needed to have more accurate physical
Bragg edge models for strain measurements.

While the demonstration in this paper is limited to a texture-free sample, the strain reconstruction
approach [12] is applicable to a more general case of a textured sample. In the general case, we need
to decouple various crystallographic information encoded in the measured Bragg edges. The actual
shape of a Bragg edge in transmitted neutron beam reflects the crystal structure averaged along the
beam path. With the current Bragg edge model we explicitly assume that the strain distribution along
the beam path is Gaussian. Secondly, crystallographic texture (significant preferred orientation of
crystallites) might not be properly handled by the current Bragg edge model. The texture affects the
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number of crystallites for which the backscattering condition is fulfilled [4, 35]. Hence, it will affect
the edge?s pedestal, tail, and height. The current Bragg edge model was not designed to account for
these effects and might not fit the data in the presence of significant texture. Hence, either a more
accurate physical modelling of a Bragg edge is needed to decouple the effects of texture and strain
on the Bragg edge, or direct derivation and deconvolution of Bragg edge data can be used. With the
current measurement setup, the later method is not feasible due to low wavelength resolution near the
edge.

To conclude, we have demonstrated that the second-order moment of the strain distribution can
be obtained experimentally. The theoretically predicted first and second moments are covered by the
95% confidence interval estimated through Bayesian inference. However we found out that Gaussian
nature of the transmission error could only be established with relatively low confidence. Further
work in this area should seek to improve our confidence in the choice of likelihood. Furthermore, the
posterior distribution shows direct evidence that the semi-empirical Santisteban model is inadequate
for uniquely extracting higher order moments in general. Therefore a model that explicitly accounts
for the moments of the strain distribution and for texture effects in the material is needed. Despite the
limitations of the current study, our findings pave the way for neutron strain tomography. The task of
more accurate Bragg edge modeling, calibration and uncertainty quantification is an opportunity for
future research.

See the supplementary material for derivation of the Santisteban model.
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Supplementary material

Here we present the model used to fit experimental data, and infer material characteristics, used in
the main paper. The predominant model for Bragg edge fitting is presented by Santisteban [1]; the
model uses the Kropff ‘resolution function’ as a basis [2]. Although the above-cited papers outline the
procedure by which the parametric fitting function can be obtained, we note they lack any detailed
derivations. In the following sections, we will provide the reader with a derivation of the Kropff
resolution function and the Santisteban parametric model.

The Resolution Function

The resolution function models the uncertainty in the time and position of neutrons leaving the mod-
erator. To derive the model, we will work in the time domain (an equivalent spatial definition can be
found via inference of the neutrons wavelength using the de Broglie relation). Following the argumen-
tation from [2], we assume that the uncertainty in resolution is controlled by two phenomena:

1. The stochastic nature of neutron moderation is modelled by a source emission time distribution
function, f(t), given by a product of a Heaviside function, #(t), and a decaying exponential,
with both functions centered at ¢y (fig. Sla),

o) = P o (200 (s
where
1, z=>0,
wo={y 120 5

2. The geometric effects of the beamline have empirically been shown to distort Bragg-lines into
Gaussian shaped curve [3]. The geometric effects are modelled by a normalised Gaussian function

g(t) centred at to (fig. S1b),
1 (t —to)?
9(t) = —o=cxp <—2U§> : (S3)

1.0 a=1 0.40
0.35
0.81
0.30
0.6 0.257
g £ 0.20
041 0.151
0.10
0.2
0.05
0.0 0.00
-10.0 -7.5 =50 -2.5 0.0 25 50 75 10.0 -100 -75 =50 -2.5 00 25 50 75 10.0
t t
(a) Source emission time distribution function, given by (b) Geometric effects described by a Gaussian distribu-
f(t), for to = 0 and a range of a. tion, g(t), for o = 0 and a range of o values.

Fig. S1: Examples of the function g(x) and f(x) for a range of o and o.
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The combined effect of the source time emission and the geometric effects of the beamline is given
by the convolution of functions f(t) and g(t). Let t — tg = 7, then the convolution is given by

I(r) = /_O; f@)g(t —x)dx = /Z \/7-%?& exp <_§> exp (—(72;;3)2> dz

oo 1 N2
= / ———exp (—E) exp (—(Tf)) dx (S4)
0 2mox e} 20
/°° 1 ( 202z + ar? + az® — 2aTx>
= exp | — 3 dx.
0 2moa 20

2T — o2

Let us subtract and add

502 (S5)
within the bracketed term in eq. S4. It follows
202z + ar? 4+ az? — 2atx 2700 — 02 270 — 02
2002 202 202
o?2? — 2027z + 2002z + 72 — 27a0? + o 1 o2
g + —_ R
20202 o 20
a?2? — 2272 + 2a0%r — (ar —0%)? 1 o?
= T \T 5 S6
20202 o (S6)
(ax — (a1 — 02))2 1 o2
— _|_ — T — —
20202 o 20

(D)D)
:j%(x_(_c;)) (s7)

Treating z as an implicit function of x and differentiating we can find the required differential to be

We now introduce

dz = \20dz. (S8)

—(1=0*/)

The limits of integration, x — oo and  — 0, become z — oo and z — , respectively.

Utilizing eq. S6 and S7 and changing the limits of integration result in

V20 T o2 ° 9
I(1) = oo XD (— (a - M)) /(sz/a) exp (—27) dz. (S9)

To converge to a closed-form solution of the convolution integral, we introduce the error function
and the complementary error function. The error function, denoted by erf(z), is a complex function
of a complex variable defined as

2 z
erf(z) = —/ exp(—t2)dt. (510)
VT Jo
The complementary error function is defined by

erfe(z) =1 — erf(2). (S11)
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Given the error function and its properties!, we can write

I(7) = %exp (— <; - 2‘;)) erfe (W) . (S12)

Eq. S12 provides a closed form solution to the convolution in eq. S4; a plot for a range of a’s and
o’s is given in fig. S2. With some minor rearrangement we arrive at the form presented in the work

0.30 1
0.25 1

0.20 1

—
-

~

>
3:: 0.15 4
=

0.10 1

0.05 1

0.00

-10.0 -7.5 -5.0 -2.5 00 25 50 7.5 10.0
Fig. S2: Plot of the convolution of the functions f(¢) and g(t) for ¢t € [-10,10] and to = 0.

by Kropft [2]; by letting

and by noting that

o2 - 2
_ o < 1
we can write

1 o? oN 1 /7 o
1The error function has the following properties:
erf(0) =0 erf(c0) =1 erf(—z) = —erf(x)
erfc(0) =1 erfc(oo) =1 erfc(—z) = 2 — erfe(x)

14



Eq. S14 is equivalent to eq. (6) presented in [2]. Although this convolution-based approach, which
splits the source emission time error, has been empirically shown to work very well, Kropff highlighted
that this model represents an oversimplification of the underlying mechanics [2].

Neutron Transmission Model

Due to the nature of a pulsed neutron source, a broad range of neutron energies, and hence wavelengths,
can be produced each time the spallation target is hit with high energy protons; we will refer to this
distribution of neutron wavelengths as S(\), which is the expected number of neutrons produced of
wavelength A. Given this distribution, and the assumption that the number of neutrons is conserved
between creation and detection, the total number of neutrons that should hit the detector between
time ¢t and t + At is

N(t) = ( /O h S(X)d)() At. (S15)

Eq. S15 however does not account for the resolution function S14, the efficiency of the detector or the
effect of placing objects in the beam path. Hence, eq. S15 becomes

N(t) = ( /0 h S(A’)T(X)e(X)R(X)dA’) A, (S16)

where T'()\) is the transition probability, e(A) is the detector efficiency for wavelength A (e(\) = 1
meaning that all neutrons transmitted are detected) and R(A) is the resolution function presented in
the previous section.

The physical fundamentals underlying nuclear interaction are described in numerous works; we will
only scrape the surface of the massive field of neutron physics by covering fundamentals needed for the
construction of the neutron transmission model. Neutrons are able to interact with matter is a variety
of ways; a convenient way of describing each type of interaction, and there cumulative effect, is by the
idea of a cross-section, 0. A basic model for neutron transmission is then an exponential attenuation,

T(A) = exp(—nxzor(N)), (S17)

governed by the material thickness x, the number of scattering centers per unit volume n and the
total scattering cross-section o () per scattering center. Restricting our consideration to only poly-
crystalline materials, the total scattering cross-section, or (), can further be broken down into several
components,

or(A) = 05 (A) + 05 (N) + o () + oina (N), (S18)

where subscripts el and inel stand for elastic and inelastic interactions and the superscripts ¢ and
inc stand for coherent and incoherent. A plot of typical collision cross-section is given in fig. S3. For
the materials employed in this study, the change in transmission near Bragg edges governed by the
coherent elastic scattering, o¢;. Then, eq. S18 can be rewritten as

or(A) = 00(A) + onr(A) (1 — H(A = 2dp)) (519)

where op,); accounts for the coherent elastic scattering contribution from the plane hkl, oy accounts
for all other contributions and H (A — 2dpk;) is the Heaviside function centered at Apg; = 2dp-

Substituting eq. S19 and S17 into eq. S16 we find
N(t) = ( / SOYe(V)R(N) exp (—nz [UO(X) o) (1— HON — 2dhkl))]) d/\’> At (S20)
0

We assume that S(A) and ¢(\) are ‘flat’ (approximately constant) functions within the narrow in-
tegration window defined by R(A) [1]. Hence, we can take them outside the integral and eq. S20
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Fig. S3: Cross-sections of a-iron per atom calculated with the software BETMAn. Figure reproduced with
permission from [4].

becomes

N(t) ~ (S(X)e()\')exp(—nxao()\/)) /0 " exp ( — nzop (V)1 — HN — thkl))>R()\’)d>\’> At.

(S21)
To proceed, we begin by normalising N(¢) by the number of neutrons counted with the sample
removed Ny(t) (i.e. the number of emitted neutrons) such that

(S(X)e()\’) exp(—naoo(N)) [ exp ( — nzop (V) (1 — HN — 2dhkl)))R(A’)dX)At

M) = YO
No(t) (5(X)6(X) e R(A’)d)d) At
(S22)
which simplifies to give
2dpk1
M(t) =~ exp(—nxao()\'))/ exp(—nxope (N))R(N)dN, (S23)
0
under the assumption that R()\’') is normalised. We now note that
2dh,kl oo oo
/ exp(—nxopk (A))R(N)dA :/ exp(—nzopg(N))R(A)dN — exp(—nzopk (A))R(A)dA
0 0 2dp k1

and following [1] we assume that exp(—nzopng(N\')) is a constant function in the narrow region defined
by R(\'); hence we yield
o0

M (t) = exp(—nzog(X)) (1 — exp(—nzoni (X)) R(N)dN. (524)

2dpk1

Finally, we substitute the function R(\) as defined in eq. S12 into eq. S24 and by making use of
integration by parts, we converge to:

M(t) = exp(—nzoo(N)) (1 — exp(—nzonk(N))) B(N) (S25)
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where B(A) is given by

1 A\ A2 o2 At o

In eq. S26, A\ represent the wavelength at the Bragg edge and all other terms have the same meaning
as defined in eq. S12. For the purposes of the fitting, a further simplifying assumption is made to the
parametric fitting function; we approximate the arguments of the two exponential functions in eq. S24
as linear function of wavelength such that the final function becomes

M (t) = exp(—(ag + boA))(1 — exp(—(a1 + b1 \)))B(N). (S27)

Eq. S27 provides a parametric model which we use in the main paper to perform a non-linear fit of
the neutron spectra in the neighbourhood of a Bragg edge.
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