166 research outputs found
Rotation and mass of the sa galaxy, ngc 681
Rotation curve, mass distribution, and mass density of SA galaxy, NGC 68
Evidence for an Intense Neutrino Flux during -Process Nucleosynthesis?
We investigate the possibility that neutrino capture on heavy nuclei competes
with beta decay in the environment where the -Process elements are
synthesized. We find that such neutrino capture is not excluded by existing
abundance determinations. We show that inclusion of significant neutrino
capture on the (neutron number) N=82 waiting point nuclei can allow the
inferred abundances of these species to provide a good fit to steady weak (beta
decay plus neutrino capture) flow equilibrium. In fact, for particular choices
of neutrino flux conditions, this fit is improved over the case where nuclei
change their charge by beta decay alone. However, this improved fit can be
realized only if neutrino capture plays a negligible role in nuclear decay back
toward stability. We discuss the implications of these considerations for
current proposed sites and models for -Process nucleosynthesis.Comment: 10 pages, plain tex, submitted to ApJ
Use of cell morphology to evaluate the effect of a peroxidase gene on cell death induction thresholds in tobacco
Tobacco suspension cultures were subjected to a range of heat stresses and used to compare morphological aspects of programmed cell death (PCD) and necrosis. Cells undergoing PCD were found to display characteristic death morphology, caused by cytoplasmic retraction of the protoplast, and to have cleaved DNA. We evaluated if the morphological characteristics of PCD could be used to monitor changes in cell death induction thresholds in transgenic cell cultures with high levels of peroxidase activity. Again, using a heat shock assay, we show that tobacco cell cultures with elevated levels of peroxidase have higher cell death induction threshold levels than wild type tobacco cell cultures. Thus, assessing PCD associated morphological changes can report on the effect of altering peroxidase genes on cell death activation in tobacco. This study demonstrates that PCD morphology could routinely be used to monitor the effects of introduced genes on programmed cell death induction thresholds in plants
Estimating the nuclear level density with the Monte Carlo shell model
A method for making realistic estimates of the density of levels in even-even
nuclei is presented making use of the Monte Carlo shell model (MCSM). The
procedure follows three basic steps: (1) computation of the thermal energy with
the MCSM, (2) evaluation of the partition function by integrating the thermal
energy, and (3) evaluating the level density by performing the inverse Laplace
transform of the partition function using Maximum Entropy reconstruction
techniques. It is found that results obtained with schematic interactions,
which do not have a sign problem in the MCSM, compare well with realistic
shell-model interactions provided an important isospin dependence is accounted
for.Comment: 14 pages, 3 postscript figures. Latex with RevTex. Submitted as a
rapid communication to Phys. Rev.
Pygmy dipole strength close to particle-separation energies - the case of the Mo isotopes
The distribution of electromagnetic dipole strength in 92, 98, 100 Mo has
been investigated by photon scattering using bremsstrahlung from the new ELBE
facility. The experimental data for well separated nuclear resonances indicate
a transition from a regular to a chaotic behaviour above 4 MeV of excitation
energy. As the strength distributions follow a Porter-Thomas distribution much
of the dipole strength is found in weak and in unresolved resonances appearing
as fluctuating cross section. An analysis of this quasi-continuum - here
applied to nuclear resonance fluorescence in a novel way - delivers dipole
strength functions, which are combining smoothly to those obtained from
(g,n)-data. Enhancements at 6.5 MeV and at ~9 MeV are linked to the pygmy
dipole resonances postulated to occur in heavy nuclei.Comment: 6 pages, 5 figures, proceedings Nuclear Physics in Astrophysics II,
May 16-20, Debrecen, Hungary. The original publication is available at
www.eurphysj.or
A neuroepithelial wave of BMP signalling drives anteroposterior specification of the tuberal hypothalamus
The tuberal hypothalamus controls life-supporting homeostatic processes, but despite its fundamental role, the cells and signalling pathways that specify this unique region of the central nervous system in embryogenesis are poorly characterised. Here, we combine experimental and bioinformatic approaches in the embryonic chick to show that the tuberal hypothalamus is progressively generated from hypothalamic floor plate-like cells. Fate-mapping studies show that a stream of tuberal progenitors develops in the anterior-ventral neural tube as a wave of neuroepithelial-derived BMP signalling sweeps from anterior to posterior through the hypothalamic floor plate. As later-specified posterior tuberal progenitors are generated, early specified anterior tuberal progenitors become progressively more distant from these BMP signals and differentiate into tuberal neurogenic cells. Gain- and loss-of-function experiments in vivo and ex vivo show that BMP signalling initiates tuberal progenitor specification, but must be eliminated for these to progress to anterior neurogenic progenitors. scRNA-Seq profiling shows that tuberal progenitors that are specified after the major period of anterior tuberal specification begin to upregulate genes that characterise radial glial cells. This study provides an integrated account of the development of the tuberal hypothalamus
Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors
The hypothalamus regulates many innate behaviors, but its development remains poorly understood. Here, we used single-cell RNA sequencing (RNA-seq) and hybridization chain reaction (HCR) to profile multiple stages of early hypothalamic development in the chick. Hypothalamic neuroepithelial cells are initially induced from prethalamic-like cells. Two distinct hypothalamic progenitor populations then emerge and give rise to tuberal and mammillary/paraventricular hypothalamic cells. At later stages, the regional organization of the chick and mouse hypothalamus is highly similar. We identify selective markers for major subdivisions of the developing chick hypothalamus and many previously uncharacterized candidate regulators of hypothalamic induction, regionalization, and neurogenesis. As proof of concept for the power of the dataset, we demonstrate that prethalamus-derived follistatin inhibits hypothalamic induction. This study clarifies the organization of the nascent hypothalamus and identifies molecular mechanisms that may control its induction and subsequent development
The STRANDS project: long-term autonomy in everyday environments
Thanks to the efforts of the robotics and autonomous systems community, the myriad applications and capacities of robots are ever increasing. There is increasing demand from end users for autonomous service robots that can operate in real environments for extended periods. In the Spatiotemporal Representations and Activities for Cognitive Control in Long-Term Scenarios (STRANDS) project (http://strandsproject.eu), we are tackling this demand head-on by integrating state-of-the-art artificial intelligence and robotics research into mobile service robots and deploying these systems for long-term installations in security and care environments. Our robots have been operational for a combined duration of 104 days over four deployments, autonomously performing end-user-defined tasks and traversing 116 km in the process. In this article, we describe the approach we used to enable long-term autonomous operation in everyday environments and how our robots are able to use their long run times to improve their own performance
Deletion of iRhom2 protects against diet-induced obesity by increasing thermogenesis
Objective: Obesity is the result of positive energy balance. It can be caused by excessive energy consumption but also by decreased energy dissipation, which occurs under several conditions including when the development or activation of brown adipose tissue (BAT) is impaired. Here we evaluated whether iRhom2, the essential cofactor for the Tumour Necrosis Factor (TNF) sheddase ADAM17/TACE, plays a role in the pathophysiology of metabolic syndrome.Methods: We challenged WT versus iRhom2 KO mice to positive energy balance by chronic exposure to a high fat diet and then compared their metabolic phenotypes. We also carried out ex vivo assays with primary and immortalized mouse brown adipocytes to establish the autonomy of the effect of loss of iRhom2 on thermogenesis and respiration.Results: Deletion of iRhom2 protected mice from weight gain, dyslipidemia, adipose tissue inflammation, and hepatic steatosis and improved insulin sensitivity when challenged by a high fat diet. Crucially, the loss of iRhom2 promotes thermogenesis via BAT activation and beige adipocyte recruitment, enabling iRhom2 KO mice to dissipate excess energy more efficiently than WT animals. This effect on enhanced thermogenesis is cell-autonomous in brown adipocytes as iRhom2 KOs exhibit elevated UCP1 levels and increased mitochondrial proton leak.Conclusion: Our data suggest that iRhom2 is a negative regulator of thermogenesis and plays a role in the control of adipose tissue homeostasis during metabolic disease. (C) 2019 The Authors. Published by Elsevier GmbH
Bilateral asynchronous acute epidural hematoma : a case report
BACKGROUND: Bilateral extradural hematomas have only rarely been reported in the literature. Even rarer are cases where the hematomas develop sequentially, one after removal of the other. Among 187 cases of operated epidural hematomas during past 4 years in our hospital, we found one case of sequentially developed bilateral epidural hematoma. CASE PRESENTATION: An 18-year-old conscious male worker was admitted to our hospital after a fall. After deterioration of his consciousness, an emergency brain CT scan showed a right temporoparietal epidural hematoma. The hematoma was evacuated, but the patient did not improve afterwards. Another CT scan showed contralateral epidural hematoma and the patient was reoperated. Postoperatively, the patient recovered completely. CONCLUSIONS: This case underlines the need for monitoring after an operation for an epidural hematoma and the need for repeat brain CT scans if the patient does not recover quickly after removal of the hematoma, especially if the first CT scan has been done less than 6 hours after the trauma. Intraoperative brain swelling can be considered as a clue for the development of contralateral hematoma
- …