1,825 research outputs found

    Performance analysis of multi-hop framed ALOHA systems with virtual antenna arrays

    Get PDF
    We consider a multi-hop virtual multiple-input-multiple-output system, which uses the framed ALOHA technique to select the radio resource at each hop. In this scenario, the source, destination and relaying nodes cooperate with neighboring devices to exploit spatial diversity by means of the concept of virtual antenna array. We investigate both the optimum number of slots per frame in the slotted structure and once the source-destination distance is fixed, the impact of the number of hops on the system performance. A comparison with deterministic, centralized re-use strategies is also presented. Outage probability, average throughput, and energy efficiency are the metrics used to evaluate the performance. Two approximated mathematical expressions are given for the outage probability, which represent lower bounds for the exact metric derived in the paper

    On the performance of a uav-aided wireless network based on nb-iot

    Get PDF
    In recent years, interest in Unmanned Aerial Vehicles (UAVs) as a means to provide wireless connectivity has substantially increased thanks to their easy, fast and flexible deployment. Among the several possible applications of UAV networks explored by the current literature, they can be efficiently employed to collect Internet-of-Things (IoT) data because the non-stringent latency and small-size traffic type is particularly suited for UAVs’ inherent characteristics. However, the implications coming from the implementation of existing technology in such kinds of nodes are not straightforward. In this article, we consider a Narrow Band IoT (NB-IoT) network served by a UAV base station. Because of the many configurations possible within the NB-IoT standard, such as the access structure and numerology, we thoroughly review the technical aspects that have to be implemented and may be affected by the proposed UAV-aided IoT network. For proper remarks, we investigate the network performance jointly in terms of the number of successful transmissions, access rate, latency, throughput and energy consumption. Then, we compare the obtained results on different and known trajectories in the research community and study the impact of varying UAV parameters such as speed and height. Moreover, the numerical assessment allows us to extend the discussion to the potential implications of this model in different scenarios. Thus, this article summarizes all the main aspects that must be considered in planning NB-IoT networks with UAVs

    CCD photometry of 2060 Chiron, 1991 January

    Get PDF
    Observations of 2060 Chiron was performed on 7 to 8 Jan. 1991 with the Mt. Palomar 1.52 m telescope in the Gunn-R passband. On-chip field stars were used to perform differential reductions. The repeatability of the 5.9 hour light curve was excellent, both within a night and from night to night. No evidence for short-term secular variations similar to those seen last year by both Luu and Jewitt (1990) and Buratti and Dunbar (1991) is seen in the new light curve. Chiron's rotational light curve appears strikingly similar to that obtained a year earlier by Luu and Jewitt (1990), both in amplitude and shape. Both light curves show strongly correlated changes over a timescale of perhaps 15 minutes. These same features were marginally visible in the 1986 light curve. Such behavior is believed to be evidence that Chiron may be more aspherical than the 4 percent intensity variation might otherwise indicate, and favors a viewing geometry where the subearth latitude is rather low. Chiron was much fainter in 1985, when a partial light curve was obtained by Marcialis. Due to the lower sampling rate of these early data, no conclusions can be made regarding the high-frequency light curve structure back then. All three of these light curves differ significantly from that obtained by Buratti and Dunbar (1991), one week before the observations of Luu and Jewitt. The Chiron field was calibrated using Landolt standards on Ut 15 Mar. 1991. A mean R-magnitude of 15.6 + or - 0.1 was found. Variability of 2060 Chiron was demonstrated over timescales of minutes, hours, and years. An intense campaign was urged to monitor the photometric behavior of Chiron throughout the 1990s

    Trajectories and resource management of flying base stations for C-V2X

    Get PDF
    In a vehicular scenario where the penetration of cars equipped with wireless communication devices is far from 100% and application requirements tend to be challenging for a cellular network not specifically planned for it, the use of unmanned aerial vehicles (UAVs), carrying mobile base stations, becomes an interesting option. In this article, we consider a cellular-vehicle-to-anything (C-V2X) application and we propose the integration of an aerial and a terrestrial component of the network, to fill the potential unavailability of short-range connections among vehicles and address unpredictable traffic distribution in space and time. In particular, we envision a UAV with C-V2X equipment providing service for the extended sensing application, and we propose a UAV trajectory design accounting for the radio resource (RR) assignment. The system is tested considering a realistic scenario by varying the RRs availability and the number of active vehicles. Simulations show the results in terms of gain in throughput and percentage of served users, with respect to the case in which the UAV is not present

    Bluetooth or 802.15.4 technologies to optimise lifetime of wireless sensor networks: Numerical comparison under a common framework

    Get PDF
    This paper aims at comparing through simulations the network lifetime of a wireless sensor network using Bluetooth-enabled or IEEE802.15.4 compliant devices. The evaluation is performed under a common reference framework, namely the EMORANS scenario for wireless sensor networks. Since the two enabling technologies rely on different MAC paradigms, suitable definition of the performance metrics is needed, in order to make the comparison meaningful. Thus, the paper has also a methodological objective. In particular, three different definitions of network lifetime are introduced, and a comparison of performance obtained by applying the different definitions is provided. Then, the comparison between the two standards is introduced: it is shown that there are no orders of magnitude of difference in network lifetime when the two technologies are used and the choice of the technology depends on the application requirements

    Performance analysis of multi-hop framed ALOHA systems with virtual antenna arrays

    Get PDF
    We consider a multi-hop virtual multiple-input-multiple-output system, which uses the framed ALOHA technique to select the radio resource at each hop. In this scenario, the source, destination and relaying nodes cooperate with neighboring devices to exploit spatial diversity by means of the concept of virtual antenna array. We investigate both the optimum number of slots per frame in the slotted structure and once the source-destination distance is fixed, the impact of the number of hops on the system performance. A comparison with deterministic, centralized re-use strategies is also presented. Outage probability, average throughput, and energy efficiency are the metrics used to evaluate the performance. Two approximated mathematical expressions are given for the outage probability, which represent lower bounds for the exact metric derived in the paper
    • …
    corecore