733 research outputs found

    Synthesis and Quantitative Structure–Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6-Methylguanine-DNA-methyltransferase, DNA Mismatch Repair and p53.

    Get PDF
    The antitumor prodrug Temozolomide is compromised by its dependence for activity on DNA mismatch repair (MMR) and the repair of the chemosensitive DNA lesion, O6-methylguanine (O6-MeG), by O6-methylguanine-DNA-methyltransferase (EC 2.1.1.63, MGMT). Tumor response is also dependent on wild-type p53. Novel 3-(2-anilinoethyl)-substituted imidazotetrazines are reported that have activity independent of MGMT, MMR and p53. This is achieved through a switch of mechanism so that bioactivity derives from imidazotetrazine-generated arylaziridinium ions that principally modify guanine-N7 sites on DNA. Mono- and bi-functional analogs are reported and a quantitative structure-activity relationship (QSAR) study identified the p-tolyl-substituted bi-functional congener as optimized for potency, MGMT-independence and MMR-independence. NCI60 data show the tumor cell response is distinct from other imidazotetrazines and DNA-guanine-N7 active agents such as nitrogen mustards and cisplatin. The new imidazotetrazine compounds are promising agents for further development and their improved in vitro activity validates the principles on which they were designed

    Synthetic Lethality of Chk1 Inhibition Combined with p53 and/or p21 Loss During a DNA Damage Response in Normal and Tumor Cells

    Get PDF
    Cell cycle checkpoints ensure genome integrity and are frequently compromised in human cancers. A therapeutic strategy being explored takes advantage of checkpoint defects in p53-deficient tumors in order to sensitize them to DNA-damaging agents by eliminating Chk1-mediated checkpoint responses. Using mouse models, we demonstrated that p21 is a key determinant of how cells respond to the combination of DNA damage and Chk1 inhibition (combination therapy) in normal cells as well as in tumors. Loss of p21 sensitized normal cells to the combination therapy much more than did p53 loss and the enhanced lethality was partially blocked by CDK inhibition. In addition, basal pools of p21 (p53 independent) provided p53 null cells with protection from the combination therapy. Our results uncover a novel p53-independent function for p21 in protecting cells from the lethal effects of DNA damage followed by Chk1 inhibition. As p21 levels are low in a significant fraction of colorectal tumors, they are predicted to be particularly sensitive to the combination therapy. Results reported in this study support this prediction

    Cell cycle checkpoint status in human malignant mesothelioma cell lines: response to gamma radiation

    Get PDF
    Knowledge of the function of the cell cycle checkpoints in tumour cells may be important to develop treatment strategies for human cancers. The protein p53 is an important factor that regulates cell cycle progression and apoptosis in response to drugs. In human malignant mesothelioma, p53 is generally not mutated, but may be inactivated by SV40 early region T antigen (SV40 Tag). However, the function of p53 has not been investigated in mesothelioma cells. Here, we investigated the function of the cell cycle checkpoints in six human mesothelioma cell lines (HMCLs) by studying the cell distribution in the different phases of the cell cycle by flow cytometry, and expression of cell cycle proteins, p53, p21WAF1/CIP1 and p27KIP1. In addition, we studied p53 gene mutations and expression of SV40 Tag. After exposure to γ-radiation, HMCLs were arrested either in one or both phases of the cell cycle, demonstrating a heterogeneity in cell cycle control. G1 arrest was p21WAF1/CIP1- and p53-dependent. Lack of arrest in G1 was not related to p53 mutation or binding to SV40 Tag, except in one HMCL presenting a missense mutation at codon 248. These results may help us to understand mesothelioma and develop new treatments

    Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells

    Get PDF
    BACKGROUND: The natural plant polyphenol resveratrol present in some foods including grapes, wine, and peanuts, has been implicated in the inhibition, delay, and reversion of cellular events associated with heart diseases and tumorigenesis. Recent work has suggested that the cancer chemoprotective effect of the compound is primarily linked to its ability to induce cell division cycle arrest and apoptosis, the latter possibly through the activation of pro-apoptotic proteins such as Bax. METHODS: The expression, subcellular localization, and importance of Bax for resveratrol-provoked apoptosis were assessed in human HCT116 colon carcinoma cells and derivatives with both bax alleles inactivated. RESULTS: Low to moderate concentrations of resveratrol induced co-localization of cellular Bax protein with mitochondria, collapse of the mitochondrial membrane potential, activation of caspases 3 and 9, and finally, apoptosis. In the absence of Bax, membrane potential collapse was delayed, and apoptosis was reduced but not absent. Resveratrol inhibited the formation of colonies by both HCT116 and HCT116 bax -/- cells. CONCLUSION: Resveratrol at physiological doses can induce a Bax-mediated and a Bax-independent mitochondrial apoptosis. Both can limit the ability of the cells to form colonies

    Benzofuran-fused Phosphole: Synthesis, Electronic, and Electroluminescence Properties

    Get PDF
    International audienceA synthetic route to novel benzofuran-fused phosphole derivatives 3-5 is described. These compounds showed optical and electrochemical properties that differ from their benzothiophene analog. Preliminary results show that 4 can be used as an emitter in OLEDs, illustrating the potential of these new compounds for opto-electronic applications

    Sophisticated Framework between Cell Cycle Arrest and Apoptosis Induction Based on p53 Dynamics

    Get PDF
    The tumor suppressor, p53, regulates several gene expressions that are related to the DNA repair protein, cell cycle arrest and apoptosis induction, which activates the implementation of both cell cycle arrest and induction of apoptosis. However, it is not clear how p53 specifically regulates the implementation of these functions. By applying several well-known kinetic mathematical models, we constructed a novel model that described the influence that DNA damage has on the implementation of both the G2/M phase cell cycle arrest and the intrinsic apoptosis induction via its activation of the p53 synthesis process. The model, which consisted of 32 dependent variables and 115 kinetic parameters, was used to examine interference by DNA damage in the implementation of both G2/M phase cell cycle arrest and intrinsic apoptosis induction. A low DNA damage promoted slightly the synthesis of p53, which showed a sigmoidal behavior with time. In contrast, in the case of a high DNA damage, the p53 showed an oscillation behavior with time. Regardless of the DNA damage level, there were delays in the G2/M progression. The intrinsic apoptosis was only induced in situations where grave DNA damage produced an oscillation of p53. In addition, to wreck the equilibrium between Bcl-2 and Bax the induction of apoptosis required an extreme activation of p53 produced by the oscillation dynamics, and was only implemented after the release of the G2/M phase arrest. When the p53 oscillation is observed, there is possibility that the cell implements the apoptosis induction. Moreover, in contrast to the cell cycle arrest system, the apoptosis induction system is responsible for safeguarding the system that suppresses malignant transformations. The results of these experiments will be useful in the future for elucidating of the dominant factors that determine the cell fate such as normal cell cycles, cell cycle arrest and apoptosis

    Down-regulation of estrogen receptor-alpha and rearranged during transfection tyrosine kinase is associated with withaferin a-induced apoptosis in MCF-7 breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Withaferin A (WA), a naturally occurring withanolide, induces apoptosis in both estrogen-responsive MCF-7 and estrogen-independent MDA-MB-231 breast cancer cell lines with higher sensitivity in MCF-7 cells, but the underlying mechanisms are not well defined. The purpose of this study was to determine the anti-cancer effects of WA in MCF-7 breast cancer cells and explore alterations in estrogen receptor alpha (ERα) and its associated molecules <it>in vitro </it>as novel mechanisms of WA action.</p> <p>Methods</p> <p>The effects of WA on MCF-7 viability and proliferation were evaluated by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and trypan blue exclusion assays. Apoptosis was evaluated by Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) flow cytometry and Western blot analysis of poly (ADP-ribose) polymerase (PARP) cleavage. Cell cycle effects were analyzed by PI flow cytometry. Western blotting was also conducted to examine alterations in the expression of ERα and pathways that are associated with ERα function.</p> <p>Results</p> <p>WA resulted in growth inhibition and decreased viability in MCF-7 cells with an IC50 of 576 nM for 72 h. It also caused a dose- and time-dependent apoptosis and G2/M cell cycle arrest. WA-induced apoptosis was associated with down-regulation of ERα, REarranged during Transfection (RET) tyrosine kinase, and heat shock factor-1 (HSF1), as well as up-regulation of phosphorylated p38 mitogen-activated protein kinase (phospho-p38 MAPK), p53 and p21 protein expression. Co-treatment with protein synthesis inhibitor cycloheximide or proteasome inhibitor MG132 revealed that depletion of ERα by WA is post-translational, due to proteasome-dependent ERα degradation.</p> <p>Conclusions</p> <p>Taken together, down-regulation of ERα, RET, HSF1 and up-regulation of phospho-p38 MAPK, p53, p21 are involved in the pro-apoptotic and growth-inhibitory effects of WA in MCF-7 breast cancer cells <it>in vitro</it>. Down-regulation of ERα protein levels by WA is caused by proteasome-dependent ERα degradation.</p

    PTTG1 Attenuates Drug-Induced Cellular Senescence

    Get PDF
    As PTTG1 (pituitary tumor transforming gene) abundance correlates with adverse outcomes in cancer treatment, we determined mechanisms underlying this observation by assessing the role of PTTG1 in regulating cell response to anti-neoplastic drugs. HCT116 cells devoid of PTTG1 (PTTG1−/−) exhibited enhanced drug sensitivity as assessed by measuring BrdU incorporation in vitro. Apoptosis, mitosis catastrophe or DNA damage were not detected, but features of senescence were observed using low doses of doxorubicin and TSA. The number of drug-induced PTTG1−/− senescent cells increased ∼4 fold as compared to WT PTTG1-replete cells (p<0.001). p21, an important regulator of cell senescence, was induced ∼3 fold in HCT116 PTTG1−/− cells upon doxorubicin or Trichostatin A treatment. Binding of Sp1, p53 and p300 to the p21 promoter was enhanced in PTTG1−/− cells after treatment, suggesting transcriptional regulation of p21. p21 knock down abrogated the observed senescent effects of these drugs, indicating that PTTG1 likely suppresses p21 to regulate drug-induced senescence. PTTG1 also regulated SW620 colon cancer cells response to doxorubicin and TSA mediated by p21. Subcutaneously xenografted PTTG1−/− HCT116 cells developed smaller tumors and exhibited enhanced responses to doxorubicin. PTTG1−/− tumor tissue derived from excised tumors exhibited increased doxorubicin-induced senescence. As senescence is a determinant of cell responses to anti-neoplastic treatments, these findings suggest PTTG1 as a tumor cell marker to predict anti-neoplastic treatment outcomes
    • …
    corecore