321 research outputs found

    Synaptic abnormalities in the infralimbic cortex of a model of congenital depression

    Get PDF
    Multiple lines of evidence suggest that disturbances in excitatory transmission contribute to depression. Whether these defects involve the number, size, or composition of glutamatergic contacts is unclear. This study used recently introduced procedures for fluorescence deconvolution tomography in a well-studied rat model of congenital depression to characterize excitatory synapses in layer I of infralimbic cortex, a region involved in mood disorders, and of primary somatosensory cortex. Three groups were studied: (1) rats bred for learned helplessness (cLH); (2) rats resistant to learned helplessness (cNLH); and (3) control Sprague Dawley rats. In fields within infralimbic cortex, cLH rats had the same numerical density of synapses, immunolabeled for either the postsynaptic density (PSD) marker PSD95 or the presynaptic protein synaptophysin, as controls. However, PSD95 immunolabeling intensities were substantially lower in cLH rats, as were numerical densities of synapse-sized clusters of the AMPA receptor subunit GluA1. Similar but less pronounced differences (comparable numerical densities but reduced immunolabeling intensity for PSD95) were found in the somatosensory cortex. In contrast, non-helpless rats had 25% more PSDs than either cLH or control rats without any increase in synaptophysin-labeled terminal frequency. Compared with controls, both cLH and cNLH rats had fewer GABAergic contacts. These results indicate that congenital tendencies that increase or decrease depression-like behavior differentially affect excitatory synapses

    CSF biochemical correlates of mixed affective states

    Full text link
    To evaluate the question of whether “mixed” bipolar disorder is a distinct entity, we compared selected cerebrospinal fluid (CSF) biochemical parameters from patients with bipolar disorder, mixed, to those with mania and major depression. Fourteen patients in each category (DSM-III) were studied with regard to CSF HVA, 5HIAA, sodium, potassium, calcium, and magnesium levels under carefully controlled conditions. CSF HVA, 5HIAA, and sodium were found to be significantly higher in manics than in major depressives. Discriminant analysis of the biochemical variables of the mixed affective group identified two biochemically distinct and clinically different subgroups of seven patients each, one resembling the manic group and the other the major depressive group. These findings suggest that mixed affective states do not exist as a separate entity, but are compsed of two subgroups obtained from the manic and major depressive categories.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66203/1/j.1600-0447.1988.tb06339.x.pd

    Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine

    Get PDF
    Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine–glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine–glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex, an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial t-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine–glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine–glutamate exchange and group II mGluR activation. Finally, protein levels from postmortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine–glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine–glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP

    Response to Therapeutic Sleep Deprivation: A Naturalistic Study of Clinical and Genetic Factors and Post-treatment Depressive Symptom Trajectory

    Get PDF
    Research has shown that therapeutic sleep deprivation (SD) has rapid antidepressant effects in the majority of depressed patients. Investigation of factors preceding and accompanying these effects may facilitate the identification of the underlying biological mechanisms. This exploratory study aimed to examine clinical and genetic factors predicting response to SD and determine the impact of SD on illness course. Mood during SD was also assessed via visual analogue scale. Depressed inpatients (n = 78) and healthy controls (n = 15) underwent ~36 h of SD. Response to SD was defined as a score of ≤ 2 on the Clinical Global Impression Scale for Global Improvement. Depressive symptom trajectories were evaluated for up to a month using self/expert ratings. Impact of genetic burden was calculated using polygenic risk scores for major depressive disorder. In total, 72% of patients responded to SD. Responders and non-responders did not differ in baseline self/expert depression symptom ratings, but mood differed. Response was associated with lower age (p = 0.007) and later age at life-time disease onset (p = 0.003). Higher genetic burden of depression was observed in non-responders than healthy controls. Up to a month post SD, depressive symptoms decreased in both patients groups, but more in responders, in whom effects were sustained. The present findings suggest that re-examining SD with a greater focus on biological mechanisms will lead to better understanding of mechanisms of depression

    Huntington's disease cerebrospinal fluid seeds aggregation of mutant huntingtin

    Get PDF
    Huntington's disease (HD), a progressive neurodegenerative disease, is caused by an expanded CAG triplet repeat producing a mutant huntingtin protein (mHTT) with a polyglutamine-repeat expansion. Onset of symptoms in mutant huntingtin gene-carrying individuals remains unpredictable. We report that synthetic polyglutamine oligomers and cerebrospinal fluid (CSF) from BACHD transgenic rats and from human HD subjects can seed mutant huntingtin aggregation in a cell model and its cell lysate. Our studies demonstrate that seeding requires the mutant huntingtin template and may reflect an underlying prion-like protein propagation mechanism. Light and cryo-electron microscopy show that synthetic seeds nucleate and enhance mutant huntingtin aggregation. This seeding assay distinguishes HD subjects from healthy and non-HD dementia controls without overlap (blinded samples). Ultimately, this seeding property in HD patient CSF may form the basis of a molecular biomarker assay to monitor HD and evaluate therapies that target mHTT

    Identification of Phosphoproteins as Possible Differentiation Markers in All-Trans-Retinoic Acid-Treated Neuroblastoma Cells

    Get PDF
    BACKGROUND: Neuroblastic tumors account for 9-10% of pediatric tumors and neuroblastoma (NB) is the first cause of death in pre-school age children. NB is classified in four stages, depending on the extent of spreading. A fifth type of NB, so-called stage 4S (S for special), includes patients with metastatic tumors but with an overall survival that approximates 75% at five years. In most of these cases, the tumor regresses spontaneously and regression is probably associated with delayed neuroblast cell differentiation. METHODOLOGY/PRINCIPAL FINDINGS: In order to identify new early markers to follow and predict this process for diagnostic and therapeutics intents, we mimicked the differentiation process treating NB cell line SJ-NK-P with all-trans-retinoic acid (ATRA) at different times; therefore the cell proteomic pattern by mass spectrometry and the phosphoproteomic pattern by a 2-DE approach coupled with anti-phosphoserine and anti-phosphotyrosine western blotting were studied. CONCLUSIONS/SIGNIFICANCE: Proteomic analysis identified only two proteins whose expression was significantly different in treated cells versus control cells: nucleoside diphosphate kinase A (NDKA) and reticulocalbin-1 (RCN1), which were both downregulated after 9 days of ATRA treatment. However, phosphoproteomic analysis identified 8 proteins that were differentially serine-phosphorylated and 3 that were differentially tyrosine-phosphorylated after ATRA treatment. All proteins were significantly regulated (at least 0.5-fold down-regulated). Our results suggest that differentially phosphorylated proteins could be considered as more promising markers of differentiation for NB than differentially expressed proteins

    Meta Modeling for Business Process Improvement

    Get PDF
    Conducting business process improvement (BPI) initiatives is a topic of high priority for today’s companies. However, performing BPI projects has become challenging. This is due to rapidly changing customer requirements and an increase of inter-organizational business processes, which need to be considered from an end-to-end perspective. In addition, traditional BPI approaches are more and more perceived as overly complex and too resource-consuming in practice. Against this background, the paper proposes a BPI roadmap, which is an approach for systematically performing BPI projects and serves practitioners’ needs for manageable BPI methods. Based on this BPI roadmap, a domain-specific conceptual modeling method (DSMM) has been developed. The DSMM supports the efficient documentation and communication of the results that emerge during the application of the roadmap. Thus, conceptual modeling acts as a means for purposefully codifying the outcomes of a BPI project. Furthermore, a corresponding software prototype has been implemented using a meta modeling platform to assess the technical feasibility of the approach. Finally, the usability of the prototype has been empirically evaluated

    Exon expression in lymphoblastoid cell lines from subjects with schizophrenia before and after glucose deprivation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to examine the effects of glucose reduction stress on lymphoblastic cell line (LCL) gene expression in subjects with schizophrenia compared to non-psychotic relatives.</p> <p>Methods</p> <p>LCLs were grown under two glucose conditions to measure the effects of glucose reduction stress on exon expression in subjects with schizophrenia compared to unaffected family member controls. A second aim of this project was to identify cis-regulated transcripts associated with diagnosis.</p> <p>Results</p> <p>There were a total of 122 transcripts with significant diagnosis by probeset interaction effects and 328 transcripts with glucose deprivation by probeset interaction probeset effects after corrections for multiple comparisons. There were 8 transcripts with expression significantly affected by the interaction between diagnosis and glucose deprivation and probeset after correction for multiple comparisons. The overall validation rate by qPCR of 13 diagnosis effect genes identified through microarray was 62%, and all genes tested by qPCR showed concordant up- or down-regulation by qPCR and microarray. We assessed brain gene expression of five genes found to be altered by diagnosis and glucose deprivation in LCLs and found a significant decrease in expression of one gene, glutaminase, in the dorsolateral prefrontal cortex (DLPFC). One SNP with previously identified regulation by a 3' UTR SNP was found to influence IRF5 expression in both brain and lymphocytes. The relationship between the 3' UTR rs10954213 genotype and IRF5 expression was significant in LCLs (p = 0.0001), DLPFC (p = 0.007), and anterior cingulate cortex (p = 0.002).</p> <p>Conclusion</p> <p>Experimental manipulation of cells lines from subjects with schizophrenia may be a useful approach to explore stress related gene expression alterations in schizophrenia and to identify SNP variants associated with gene expression.</p

    Is there a role for melatonin in fibromyalgia?

    Get PDF
    Fibromyalgia, characterised by persistent pain, fatigue, sleep disturbance and cognitive dysfunction, is a central sensitivity syndrome that also involves abnormality in peripheral generators and in the hypothalamic pituitary adrenal axis. Heterogeneity of clinical expression of fibromyalgia with a multifactorial aetiology has made the development of effective therapeutic strategies challenging. Physiological properties of the neurohormone melatonin appear related to the symptom profile exhibited by patients with fibromyalgia and thus disturbance of it’s production would be compatible with the pathophysiology. Altered levels of melatonin have been observed in patients with fibromyalgia which are associated with lower secretion during dark hours and higher secretion during daytime. However, inconsistencies of available clinical evidence limit conclusion of a relationship between levels of melatonin and symptom profiles in patients with fibromyalgia. Administration of melatonin to patients with fibromyalgia has demonstrated suppression of many symptoms and an improved quality of life consistent with benefit as a therapy for the management of this condition. Further studies with larger samples, however, are required to explore the potential role of melatonin in the pathophysiology of fibromyalgia and determine the optimal dosing regimen of melatonin for the management of fibromyalgia

    Association Rate Constants of Ras-Effector Interactions Are Evolutionarily Conserved

    Get PDF
    Evolutionary conservation of protein interaction properties has been shown to be a valuable indication for functional importance. Here we use homology interface modeling of 10 Ras-effector complexes by selecting ortholog proteins from 12 organisms representing the major eukaryotic branches, except plants. We find that with increasing divergence time the sequence similarity decreases with respect to the human protein, but the affinities and association rate constants are conserved as predicted by the protein design algorithm, FoldX. In parallel we have done computer simulations on a minimal network based on Ras-effector interactions, and our results indicate that in the absence of negative feedback, changes in kinetics that result in similar binding constants have strong consequences on network behavior. This, together with the previous results, suggests an important biological role, not only for equilibrium binding constants but also for kinetics in signaling processes involving Ras-effector interactions. Our findings are important to take into consideration in system biology approaches and simulations of biological networks
    corecore