2,529 research outputs found

    Cosmological backreaction of a quantized massless scalar field

    Full text link
    We consider the backreaction problem of a quantized minimally coupled massless scalar field in cosmology. The adiabatically regularized stress-energy tensor in a general Friedmann-Robertson-Walker background is approximately evaluated by using the fact that subhorizon modes evolve adiabatically and superhorizon modes are frozen. The vacuum energy density is verified to obey a new first order differential equation depending on a dimensionless parameter of order unity, which calibrates subhorizon/superhorizon division. We check the validity of the approximation by calculating the corresponding vacuum energy densities in fixed backgrounds, which are shown to agree with the known results in de Sitter space and space-times undergoing power law expansions. We then apply our findings to slow-roll inflationary models. Although backreaction effects are found to be negligible during the near exponential expansion, the vacuum energy density generated during this period might be important at later stages since it decreases slower than radiation or dust.Comment: 20 pages, 2 figures, v2: comments and a reference added, to appear in JCA

    Healing Images

    Get PDF

    Novel Modifications of Parallel Jacobi Algorithms

    Get PDF
    We describe two main classes of one-sided trigonometric and hyperbolic Jacobi-type algorithms for computing eigenvalues and eigenvectors of Hermitian matrices. These types of algorithms exhibit significant advantages over many other eigenvalue algorithms. If the matrices permit, both types of algorithms compute the eigenvalues and eigenvectors with high relative accuracy. We present novel parallelization techniques for both trigonometric and hyperbolic classes of algorithms, as well as some new ideas on how pivoting in each cycle of the algorithm can improve the speed of the parallel one-sided algorithms. These parallelization approaches are applicable to both distributed-memory and shared-memory machines. The numerical testing performed indicates that the hyperbolic algorithms may be superior to the trigonometric ones, although, in theory, the latter seem more natural.Comment: Accepted for publication in Numerical Algorithm

    The Weyl tensor two-point function in de Sitter spacetime

    Get PDF
    We present an expression for the Weyl-Weyl two-point function in de Sitter spacetime, based on a recently calculated covariant graviton two-point function with one gauge parameter. We find that the Weyl-Weyl two-point function falls off with distance like r^{-4}, where r is spacelike coordinate separation between the two points.Comment: 9 pages, no figure

    Graphene: Status and Prospects

    Full text link
    Graphene is a wonder material with many superlatives to its name. It is the thinnest material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have the smallest effective mass (it is zero) and can travel micrometer-long distances without scattering at room temperature. Graphene can sustain current densities 6 orders higher than copper, shows record thermal conductivity and stiffness, is impermeable to gases and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a bench-top experiment. What are other surprises that graphene keeps in store for us? This review analyses recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.Comment: pre-edited version of the review published in Science Please note that only 40 references are allowed by the magazine. Sorr

    The inflationary prediction for primordial non-gaussianity

    Full text link
    We extend the \delta N formalism so that it gives all of the stochastic properties of the primordial curvature perturbation \zeta if the initial field perturbations are gaussian. The calculation requires only the knowledge of some family of unperturbed universes. A formula is given for the normalisation \fnl of the bispectrum of \zeta, which is the main signal of non-gaussianity. Examples of the use of the formula are given, and its relation to cosmological perturbation theory is explained.Comment: Revtex Latex file. 4 pages, no figures. v4: minor changes, typos corrected, references added and updated. Version published in Physical Review Letter

    Inflaton Decay in an Alpha Vacuum

    Full text link
    We study the alpha vacua of de Sitter space by considering the decay rate of the inflaton field coupled to a scalar field placed in an alpha vacuum. We find an {\em alpha dependent} Bose enhancement relative to the Bunch-Davies vacuum and, surprisingly, no non-renormalizable divergences. We also consider a modified alpha dependent time ordering prescription for the Feynman propagator and show that it leads to an alpha independent result. This result suggests that it may be possible to calculate in any alpha vacuum if we employ the appropriate causality preserving prescription.Comment: 16 pages, 1 figure, Revtex 4 preprin

    Imaging analysis of LDEF craters

    Get PDF
    Two small craters in Al from the Long Duration Exposure Facility (LDEF) experiment tray A11E00F (no. 74, 119 micron diameter and no. 31, 158 micron diameter) were analyzed using Auger electron spectroscopy (AES), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), low voltage scanning electron microscopy (LVSEM), and SEM energy dispersive spectroscopy (EDS). High resolution images and sensitive elemental and molecular analysis were obtained with this combined approach. The result of these analyses are presented

    Hadamard States and Adiabatic Vacua

    Full text link
    Reversing a slight detrimental effect of the mailer related to TeXabilityComment: 10pages, LaTeX (RevTeX-preprint style

    Vacuum polarization near cosmic string in RS2 brane world

    Get PDF
    Gravitational field of cosmic strings in theories with extra spatial dimensions must differ significantly from that in the Einstein's theory. This means that all gravity induced properties of cosmic strings need to be revised too. Here we consider the effect of vacuum polarization outside a straight infinitely thin cosmic string embedded in a RS2 brane world. Perturbation technique combined with the method of dimensional regularization is used to calculate vacren{}_{vac}^{ren} for a massless scalar field.Comment: 8 pages, RevTeX
    • …
    corecore