36 research outputs found

    Bioenergy in Europe is unlikely to make a timely contribution to climate change targets

    Get PDF
    Increasing bioenergy production is a significant component of European efforts to mitigate climate change, but has contested potential for reducing emissions. We use an integrated land system model to explore the effects of large-scale bioenergy production within the European Union on carbon balances. We find that increased bioenergy crop production is likely to cause substantial deforestation and a commensurate loss of associated carbon stocks largely due to displacement of food production from other areas. Deforestation would occur either within the EU if European forests were not protected, or in other parts of the world arising from indirect land use change if European forests were protected. The net carbon benefit of bioenergy production is largely negative, or uncertain, even under the most optimistic levels of fossil fuel replacement, and will not offset initial carbon losses over the coming 50 yr. The growth of intensive agriculture required to satisfy the demand for bioenergy and food will have negative impacts on crucial ecosystem services. Overall, we identify substantial disadvantages to increasing bioenergy production relative to freeing land for natural succession. At best, large-scale bioenergy production is likely to be irrelevant to time-sensitive climate targets.</p

    An open‐source image classifier for characterizing recreational activities across landscapes

    Get PDF
    Environmental management increasingly relies on information about ecosystem services for decision-making. Compared with regulating and provisioning services, cultural ecosystem services (CES) are particularly challenging to characterize and measure at management-relevant spatial scales, which has hindered their consideration in practice. Social media are one source of spatially explicit data on where environments support various types of CES, including physical activity. As tools for automating social media content analysis with artificial intelligence (AI) become more commonplace, studies are promoting the potential for AI and social media to provide new insights into CES. Few studies, however, have evaluated what biases are inherent to this approach and whether it is truly reproducible. This study introduces and applies a novel and open-source convolutional neural network model that uses computer vision to recognize recreational activities in the content of photographs shared as social media. We train a model to recognize 12 common recreational activities to map one aspect of recreation in a national forest in Washington, USA, based on images uploaded to Flickr. The image classifier performs well, overall, but varies by activity type. The model, which is trained with data from one region, performs nearly as well in a novel region of the same national forest, suggesting that it is broadly applicable across similar public lands. By comparing the results from our CNN model with an on-site survey, we find that there are apparent biases in which activities visitors choose to photograph and post to social media. After considering potential issues with underlying data and models, we map activity diversity and find that natural features (such as rivers, lakes and higher elevations) and some built infrastructure (campgrounds, trails, roads) support a greater diversity of activities in this region. We make our model and training weights available in open-source software, to facilitate reproducibility and further model development by researchers who seek to understand recreational values at management-relevant scales—and more broadly provide an example of how to build, test and apply AI to understand recreation and other types of CESs

    Three billion new trees in the EU’s biodiversity strategy: low ambition, but better environmental outcomes?

    Get PDF
    The EU Biodiversity strategy aims to plant 3 billion trees by 2030, in order to improve ecosystem restoration and biodiversity. Here, we compute the land area that would be required to support this number of newly planted trees by taking account of different tree species and planting regimes across the EU member states. We find that 3 billion trees would require a total land area of between 0.81 and 1.37 Mha (avg. 1.02 Mha). The historic forest expansion in the EU since 2010 was 2.44 Mha, meaning that despite 3 billion trees sounding like a large number this target is considerably lower than historic afforestation rates within the EU, i.e. only 40% of the past trend. Abandoned agricultural land is often proposed as providing capacity for afforestation. We estimate agricultural abandoned land areas from the HIstoric Land Dynamics Assessment+ database using two time thresholds (abandonment since 2009 or 2014) to identify potential areas for tree planting. The area of agricultural abandoned land was 2.6 Mha (potentially accommodating 7.2 billion trees) since 2009 and 0.2 Mha (potentially accommodating 741 million trees) since 2014. Our study highlights that sufficient space could be available to meet the 3 billion tree planting target from abandoned land. However, large-scale afforestation beyond abandoned land could have displacement effects elsewhere in the world because of the embodied deforestation in the import of agricultural crops and livestock. This would negate the expected benefits of EU afforestation. Hence, the EU\u27s relatively low ambition on tree planting may actually be better in terms of avoiding such displacement effects. We suggest that tree planting targets should be set at a level that considers physical ecosystem dynamics as well as socio-economic conditions

    Three billion new trees in the EU’s biodiversity strategy:low ambition, but better environmental outcomes?

    Get PDF
    The EU Biodiversity strategy aims to plant 3 billion trees by 2030, in order to improve ecosystem restoration and biodiversity. Here, we compute the land area that would be required to support this number of newly planted trees by taking account of different tree species and planting regimes across the EU member states. We find that 3 billion trees would require a total land area of between 0.81 and 1.37 Mha (avg. 1.02 Mha). The historic forest expansion in the EU since 2010 was 2.44 Mha, meaning that despite 3 billion trees sounding like a large number this target is considerably lower than historic afforestation rates within the EU, i.e. only 40% of the past trend. Abandoned agricultural land is often proposed as providing capacity for afforestation. We estimate agricultural abandoned land areas from the HIstoric Land Dynamics Assessment+ database using two time thresholds (abandonment since 2009 or 2014) to identify potential areas for tree planting. The area of agricultural abandoned land was 2.6 Mha (potentially accommodating 7.2 billion trees) since 2009 and 0.2 Mha (potentially accommodating 741 million trees) since 2014. Our study highlights that sufficient space could be available to meet the 3 billion tree planting target from abandoned land. However, large-scale afforestation beyond abandoned land could have displacement effects elsewhere in the world because of the embodied deforestation in the import of agricultural crops and livestock. This would negate the expected benefits of EU afforestation. Hence, the EU’s relatively low ambition on tree planting may actually be better in terms of avoiding such displacement effects. We suggest that tree planting targets should be set at a level that considers physical ecosystem dynamics as well as socio-economic conditions.</p

    Implementing land-based mitigation to achieve the Paris Agreement in Europe requires food system transformation

    Get PDF
    Land-based mitigation, particularly through afforestation, reforestation and avoided deforestation, is an important component of the 'Paris Agreement' to limit average global temperature increases to between 1.5 and 2 ◦C. However, the specific actions that would ensure sufficient carbon sequestration in forests remain unclear, as do their trade-offs against other land-based objectives. We use a regional integrated assessment model to identify the conditions under which European forests reach the extent required by mitigation targets. We compare stylised scenarios of changes in meat demand, bioenergy crop production, irrigation efficiency, and crop yield improvement. Only 42 out of 972 model simulations achieved minimum levels of food provision and forest extent without the need to change dietary preferences, but relied on crop yield improvements within Europe of at least 30%. Maintaining food imports at today's levels to avoid the potential displacement of food production and deforestation required at least a 15 % yield improvement, or a drastic reduction in meat consumption (avg. 57 %). The results suggest that the large-scale afforestation/reforestation planned in European targets is virtually impossible to achieve without transformation of the food system, making it unlikely that Europe will play its required role in global efforts to limit climate change without utilising land beyond its borders

    A Temporal Analysis of Posting Behavior in Social Media Streams

    No full text
    In this work, we investigated the social media streams to understand their characteristics and their temporal aspects. We assumed that each blogger has different temporal preference for posting. To investigate this hypothesis, we analyzed a massive dataset, nearly 700,000 blog articles, with the consideration of two factors which are day of the week and time of the day. The comparison was done in manifold ways: Blogosphere vs. Twitter, commercial blogs vs. non-commercial blogs, and their individuals. We hope that this work provides a hint to develop a personalized system which can be used for the reduction of the system resources for pull/fetch technology

    Effects of Music-Based Interventions on Motor and Non-Motor Symptoms in Patients with Parkinson’s Disease: A Systematic Review and Meta-Analysis

    No full text
    This systematic review and meta-analysis examined previous studies on music-based interventions for individuals with Parkinson’s disease (PD). The effectiveness of the interventions on various motor and non-motor outcomes was evaluated. This review was conducted by searching PubMed, CINAHL, PsycINFO, and Cochrane Library CENTRAL prior to June 2022 for randomized controlled trial (RCT) and controlled clinical trial (CCT) studies published in English. Data were expressed as weighted/standardized mean difference (MD/SMD) with 95% confidence intervals (CI). I2 index was used for heterogeneity. The initial search identified 745 studies, and 13 studies involving 417 participants with PD which met the inclusion criteria included in this review. The results of the meta-analysis revealed that music-based interventions can significantly improve walking velocity (MD = 0.12, 95% CI = 0.07~0.16, p p = 0.002), and mobility (MD = −1.05, 95% CI = −1.53~−0.57, p p = 0.39), cognitive flexibility (MD = 20.91, 95% CI = −10.62~52.44, p = 0.19), inhibition (SMD = 0.07, 95% CI = −0.40~0.55, p = 0.76), and quality of life (SMD = −0.68, 95% CI= −1.68~0.32, p = 0.18). The findings suggest that music-based interventions are effective for the improvement of some motor symptoms, but evidence for non-motor symptoms is limited. Further high-quality studies with a larger sample size are required to obtain the robust effects of music-based interventions on various outcomes among patients with PD

    Bioenergy in Europe is unlikely to make a timely contribution to climate change targets

    No full text
    Increasing bioenergy production is a significant component of European efforts to mitigate climate change, but has contested potential for reducing emissions. We use an integrated land system model to explore the effects of large-scale bioenergy production within the European Union on carbon balances. We find that increased bioenergy crop production is likely to cause substantial deforestation and a commensurate loss of associated carbon stocks largely due to displacement of food production from other areas. Deforestation would occur either within the EU if European forests were not protected, or in other parts of the world arising from indirect land use change if European forests were protected. The net carbon benefit of bioenergy production is largely negative, or uncertain, even under the most optimistic levels of fossil fuel replacement, and will not offset initial carbon losses over the coming 50 yr. The growth of intensive agriculture required to satisfy the demand for bioenergy and food will have negative impacts on crucial ecosystem services. Overall, we identify substantial disadvantages to increasing bioenergy production relative to freeing land for natural succession. At best, large-scale bioenergy production is likely to be irrelevant to time-sensitive climate targets
    corecore