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Abstract
1.	 Environmental management increasingly relies on information about ecosystem 

services for decision-making. Compared with regulating and provisioning ser-
vices, cultural ecosystem services (CES) are particularly challenging to charac-
terize and measure at management-relevant spatial scales, which has hindered 
their consideration in practice.

2.	 Social media are one source of spatially explicit data on where environments 
support various types of CES, including physical activity. As tools for automating 
social media content analysis with artificial intelligence (AI) become more com-
monplace, studies are promoting the potential for AI and social media to provide 
new insights into CES. Few studies, however, have evaluated what biases are 
inherent to this approach and whether it is truly reproducible.

3.	 This study introduces and applies a novel and open-source convolutional neural 
network model that uses computer vision to recognize recreational activities 
in the content of photographs shared as social media. We train a model to rec-
ognize 12 common recreational activities to map one aspect of recreation in a 
national forest in Washington, USA, based on images uploaded to Flickr.

4.	 The image classifier performs well, overall, but varies by activity type. The 
model, which is trained with data from one region, performs nearly as well in a 
novel region of the same national forest, suggesting that it is broadly applicable 
across similar public lands. By comparing the results from our CNN model with 
an on-site survey, we find that there are apparent biases in which activities visi-
tors choose to photograph and post to social media.

5.	 After considering potential issues with underlying data and models, we map ac-
tivity diversity and find that natural features (such as rivers, lakes and higher 
elevations) and some built infrastructure (campgrounds, trails, roads) support a 
greater diversity of activities in this region.

6.	 We make our model and training weights available in open-source software, to 
facilitate reproducibility and further model development by researchers who 
seek to understand recreational values at management-relevant scales—and 
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1  |  INTRODUC TION

Ecosystem services are a widely accepted framework for incor-
porating and accounting for human well-being in environmental 
assessments and management decisions (IPBES,  2019; Mandle 
et al., 2021 ; TEEB, 2010). Beyond the material services provided by 
ecosystems, the framework emphasizes consideration of the non-
material and cultural ecosystem services (CES) that benefit people 
through increased physical, mental, social and spiritual health (Fish 
et al.,  2016; IPBES,  2019; Russell et al.,  2013). However, CES are 
rarely considered in practice, especially compared with regulating 
and provisioning services such as water supply and carbon seques-
tration (Alix-Garcia & Wolff,  2014; Goldman-Benner et al.,  2012; 
Gould et al., 2019). The potential of CES research has not been fully 
realized by managers, at least in part due to difficulties character-
izing and measuring CES, as well as mismatches in the scale of CES 
studies and management decisions (Baumeister et al., 2020; Gould 
et al., 2019; Guerry et al., 2015; Hernández-Morcillo et al., 2013; La 
Rosa et al., 2016; Satz et al., 2013).

Recent research has proposed that challenges to conceptualiz-
ing and measuring CES can be overcome by analysing information 
shared on social media (Calcagni et al., 2019; Gliozzo et al., 2016; 
Wood et al.,  2013). This idea is premised on the observation that 
people use social media platforms such as Twitter and Instagram to 
share descriptions and depictions of their cultural experiences and 
interactions with the surrounding environment (Di Minin et al., 2015; 
Ghermandi & Sinclair,  2019; Langemeyer & Calcagni,  2022). 
Additionally, since social media are often georeferenced—meaning 
they are tied to the location where the content is created—they pro-
vide a spatial record of human–ecosystem interactions. As Havinga 
et al.  (2020) demonstrate, geotagged social media are useful for 
measuring many types of CES including physical activity, aesthetic 
appreciation, ecological meaning, the development of knowledge 
and spiritual importance. Indeed, studies leveraging publicly avail-
able social media have begun investigating where environments 
provide aesthetically pleasing landscapes (Egarter Vigl et al., 2021; 
Figueroa-Alfaro & Tang, 2017; Ghermandi et al., 2020), enjoyment 
of plants and animals (Richards & Friess, 2015), and opportunities 
to participate in religious (Roberts,  2017), spiritual (Oteros-Rozas 
et al., 2018) or recreational activities (Väisänen et al., 2021).

Most prior CES research using social media has relied on total 
counts of users who share content to map recreational visitation 
(Tenkanen et al., 2017; Wilkins et al., 2021; Wood et al., 2020) and 
understand how visitation varies across environments or conditions 
(Fisher et al., 2018; Kim et al., 2019; Levin et al., 2017). More recently, 

studies have begun utilizing not only the location and volume of social 
media, but also the content of the posts (e.g. Clemente et al., 2019; 
Egarter Vigl et al., 2021; Gosal et al., 2019). In some studies, the con-
tent contained in images is classified by manually viewing and labelling 
images (Clemente et al., 2019; Langemeyer et al., 2018; Oteros-Rozas 
et al., 2018; Pickering et al., 2020; Richards & Friess, 2015; Thiagarajah 
et al., 2015). This method is inefficient, however, and it is difficult to 
scale (an average of 140 photos per researcher per hour (Richards & 
Friess, 2015)), so recent studies have explored automated methods 
using artificial intelligence (AI) provided by commercial tools such as 
Google Cloud Vision (Gosal et al., 2019; Richards & Tunçer, 2018) and 
Clarifai (Egarter Vigl et al., 2021; Lee et al., 2019). Gosal et al. (2019), 
for example, used Google Cloud Vision combined with a latent seman-
tic analysis in order to map several recreational values and identify 
where recreation may threaten particular species within protected 
areas. Lee et al.  (2019) used Clarifai to annotate images, then per-
formed a network analysis to derive themes of the photos, several of 
which were related to cultural services. These studies were an inno-
vative step towards using publicly shared photographs to learn about 
recreational, aesthetic and other cultural benefits which people de-
rive from nature, and they illustrate the potential for AI to be applied 
to a wide variety of questions related to these topics.

Despite the demonstrated potential for AI such as computer vi-
sion to be used to measure aspects of CES from social media, few 
studies have evaluated what biases are inherent to this approach and 
whether it is truly reproducible. There are several potential issues. 
First, the AI underlying commonly used tools may not be generating 
consistent predictions about the content depicted in images. Yet, 
this is difficult to evaluate since nearly every study to date has relied 
on proprietary tools that are implemented in commercial software 
(but see Väisänen et al., 2021). These commercial tools are generally 
not well documented and are often modified (or decommissioned) 
without notice nor consultation with users. This lack of transpar-
ency makes it difficult to reproduce analyses and to apply standard 
methods for evaluating model accuracy and performance since the 
outputs of a model may differ in unknown ways over time (Lazer 
et al., 2014). In contrast, with open-source tools and algorithms, it 
is feasible to test and evaluate model performance in different sit-
uations and understand how outcomes are related to model struc-
ture and parameters. Second, even when computer vision models 
perform well, the content of the images that are shared as social 
media may not accurately represent the ways that people interact 
with the environment. There are likely biases in both who chooses 
to share images to particular platforms and in what type of con-
tent is represented in those images (Mashhadi et al., 2021; Ruths & 

more broadly provide an example of how to build, test and apply AI to under-
stand recreation and other types of CESs.
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Pfeffer, 2014). Without comparing results from AI models to results 
from other methods of elucidating CES values such as public partici-
patory geographic information systems (PPGIS) (Muñoz et al., 2020; 
Tolvanen et al.,  2020) or surveys (Heikinheimo et al.,  2017; Song 
et al.,  2020), it is impossible to say whether applying AI to social 
media is generating consistent, complementary or even directly con-
tradictory information about CES.

This study explores the potential for social media and computer 
vision to map where ecosystems create opportunities for recre-
ational activity, as one example of a CES. We introduce a convo-
lutional neural network (CNN) that uses AI to recognize outdoor 
activities in the content of photographs posted to social media. We 
describe the creation of a training dataset and our development and 
evaluation of the model using 13 years of photographs from Flickr. 
To test how well the model performs, we compare model predictions 
to labels assigned manually by researchers, and discuss the perfor-
mance overall, and by activity class, both in the original study re-
gion and in a novel region of the same forest. Then we demonstrate 
that there are biases in the frequency with which various activities 
are shared on social media, by comparing the predicted activities 
to activities reported by respondents to an on-site survey admin-
istered on the same public lands in Washington, USA. Finally, we 
present an example application of the methods by creating maps of 
recreational activities at two locations and relating the diversity of 
activities present in different parts of the region to underlying land-
scape characteristics. To facilitate future model development and to 
ensure reproducibility, we share an entirely open-source software 
package called recCNNize1 as well as the fitted weights of our CNN 
model so that others can replicate our approach for identifying rec-
reational activities in images.

2  |  METHODS

In this study, we develop, test and apply a classifier to recognize rec-
reational activities in images shared on social media from two loca-
tions on public land in Washington, USA.

2.1  |  Study site

This study focuses on public lands in the Mount Baker-Snoqualmie 
National Forest in western Washington, USA (Figure  1). We de-
veloped our classifier using photographs from the Middle Fork 
Snoqualmie River Valley (Middle Fork), which is a popular recrea-
tion destination located approximately 50 km east of the Seattle 
metropolitan area. The Valley contains lush coniferous forest in 
the foothills of the Cascade Range, ranging from 150 to 1850 m 
above sea level. Due to its low elevation and temperate maritime 
climate, the valley floor and access roads remain snow-free year-
round. The Middle Fork Snoqualmie River is a designated Wild 
and Scenic River, and approximately half of the study region is in 
the Alpine Lakes Wilderness. The area provides a variety of rec-
reational opportunities, ranging from trails for hiking, biking and 
horseback riding to campgrounds and day-use picnic sites. Vehicle 
access to this valley is via a single road, making it a relatively self-
contained recreation destination. We tested our classifier in the 
Mountain Loop Highway corridor (Mountain Loop) region of the 
same National Forest, located approximately 75 km northeast of 
Seattle, WA. This area is another common destination for visi-
tors, though the amount and character of recreational use differs 
between the two regions. The Mountain Loop region has steeper 

F I G U R E  1  Map of the Middle Fork and 
Mountain Loop study regions in western 
Washington, USA, showing the location of 
all geotagged Flickr photographs posted 
within the boundaries between 2005 and 
2018.
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terrain and it includes both developed and informal campsites. As 
a result, it tends to draw individuals interested in physical chal-
lenge as well as a larger number of overnight visitors. Portions of 
the region are snow covered and inaccessible during the winter 
months.

We created spatially explicit boundaries around each region 
based on access. The Middle Fork boundary encompassed just over 
450 km2 around recreation sites primarily accessed via the Middle 
Fork Road. The Mountain Loop boundary included almost 1450 km2, 
with recreation sites primarily accessed from the Mountain Loop 
Highway or from State Route 530.

2.2  |  Data description

2.2.1  |  Flickr data

We collected all photographs posted to Flickr within the Middle 
Fork and Mountain Loop regions between 2005 and 2018 by 
querying the Flickr application programming interface (API) in 
December, 2018–January, 2019. This resulted in 14,839 pho-
tographs from the Middle Fork region (from 688 unique users, 
max. 5940 photos from a single user) and 18,350 photos in the 
Mountain Loop region (from 863 unique users, max. 681 photos 
from a single user).

2.2.2  |  On-site surveys

Researchers surveyed visitors leaving the Middle Fork Valley on 
23 days between August 2 and October 10, 2018. We selected 
survey days throughout the survey period to include an even 
number of weekday (Monday–Thursday) and weekend (Friday–
Sunday) days. After intercepting a group of visitors, research-
ers explained that they were studying outdoor recreation in the 
Middle Fork Valley, that participation was entirely voluntary, and 
that responses would be anonymous. They then verbally asked 
whether the visitors would participate in the study. Upon receiv-
ing verbal consent, the researchers asked a random member of 
the party (the adult with the next upcoming birthday) to complete 
a written survey in English. The intercept survey was part of a 
larger project to describe outdoor recreational use in the region, 
and among other questions it asked visitors to select the activities 
they participated in during their visit to the region from a prede-
fined list (Table 1). In total, 595 visitors representing 595 parties 
completed a survey, and 580 of the respondents reported what 
recreational activities they participated in during their visit. The 
University of Washington Institutional Review Board reviewed 
our study and determined that the research met regulations for 
the protection of human subjects and the study carried no greater 
than minimal risk to those subjects. Accordingly, they granted the 
study exempt status (IRB ID: STUDY00005339).

2.3  |  Image classification

2.3.1  |  Recreational activity classes

We chose 12 of the most common recreational activities in the 
Middle Fork for image classification (Table 1). Additionally, we cre-
ated two ‘no activity’ classes to aid in image classification—one for 
photographs without any people present, and the other for photo-
graphs where people were present but not obviously engaging in any 
particular activity.

2.3.2  |  CNN classifier

We developed a CNN to measure the probability that Flickr images 
contained evidence of the 14 recreational activity classes (Table 1). 
We regarded the identification of activities in images as a multino-
mial classification problem. In other words, given a photograph Xi 
from location i , we evaluated whether the photograph reflected 
recreational activity a. We customized and fine-tuned Google's 
Inception (InceptionResNetV2) model (Szegedy et al., 2017) to rec-
ognize patterns corresponding with our focal recreational activities. 
We chose to use this particular model because it is widely recog-
nized as one of the best performing CNN models, compared to com-
peting models such as Resnet and GoogLeNet (Bianco et al., 2018; 
Canziani et al., 2017). While it is slower to train, we expected the 
deepness and complexity of this model to be more likely to capture 
subtle differences between activity classes. Furthermore, the train-
ing speed was not a critical concern since our study used a relatively 
small number of training images as compared to other work using 
CNNs.

The final model contained 164 layers, the first 160 of which 
were taken directly from the original Inception model. Because 
these early layers recognize lower level features, such as edges and 
basic shapes, we were able to take advantage of them by re-using 
the trained weights provided with the original CNN model (Szegedy 
et al., 2017), in a process known as transfer learning.

We customized the model by removing the final dense layer from 
the Inception model (which is trained to recognize 1000 classes in 
ImageNet photos), and replacing it with four custom layers which we 
trained using the training data described in Section 2.3.3. Specifically, 
we added a 2D global average pooling layer, a new dense layer with 
1024 classes, a 30% dropout layer (i.e. 30% of the features are set 
to zero randomly) and a dense layer with softmax activation that as-
signs class labels to images (n = 14) (Chollet et al., 2018) (Figure S1). 
The average pooling and the dropout layers are included to avoid 
overfitting. Note that the dropout layer was ignored when testing 
at the end of each training epoch, so all features were used in pre-
dicting validation images. A consequence of using a dropout layer 
is that the model can yield higher validation accuracy than training 
accuracy. The final softmax layer calculates the probability of an 
image belonging to each of the possible classes. In the analysis, we 
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regarded this probability output as the model's confidence on target 
images, and call the class with the highest probability the top-1 class 
label. We used the top-1 prediction in later analyses.

2.3.3  |  Classifier training

We randomly sampled 6459 (44%) of the Flickr images downloaded 
from the Middle Fork and manually assigned each to one of the rec-
reational activity classes described in Table 1. There was an embed-
ded data imbalance that led to a scarcity of some activity classes 
in the random photographs (e.g. only one image depicting trail run-
ning and three images depicting fishing). Following an initial round of 
training, we added training data for some poorly performing activity 
classes by downloading public tagged photographs from ImageNet2 
and Pixabay3 (Table  S1; Figure  S2). These additional images were 
used primarily to increase the number of images included in the 
minor classes, as well as adding photographs for classes which were 
frequently confused with one another (such as mountain biking and 
the ‘other activities’ class which included motorcycling). These sup-
plementary images were mainly in situ images relevant to the activi-
ties, but for some classes without sufficient in situ images we also 
included images depicting elements or objects such as backpacks 
that we believed to be associated with a specific activity. The full 
training dataset was 11,912 photographs (6459 Flickr images from 
the Middle Fork and 5453 images from the ImageNet and Pixabay 
databases; Table S1).

We used the 11,912 labelled images to train the final four cus-
tom layers in our CNN model. In other words, only the four layers 
were trained against the labelled Flickr photos while the early lay-
ers were unchanged or ‘frozen’ during training (Chollet et al., 2018). 
We sought to minimize the categorical cross-entropy loss func-
tion, a common function used to estimate how well predicted class 
probabilities match the target classes, using the Adam optimization 
algorithm (learning rate = 1e-5) (Chollet, 2015). We allowed the al-
gorithm to conduct up to 300 complete cycles through the training 
dataset (i.e. epochs) as it searched for the optimal solution and train-
ing weights, but instructed it to stop training if the training accuracy 
did not improve in 20 consecutive epochs.

We trained the model on 60% (7140) of the labelled images 
and withheld 40% (4772) of the images for validation during the 
training process. To compensate for the small number of images in 
some classes, we augmented our training data by applying random 
geometric transformations in each epoch (such as flipping, resiz-
ing, brightening and rotating, Table  S2). We chose a batch size of 
512, meaning that 512 of the labelled images were used to train at 
a time, causing the algorithm to run through 14 folds (7140∕512) 
in each epoch. In each fold, the predictions were iteratively eval-
uated against the true class labels using categorical accuracy (i.e. 
training accuracy), and then the model weights were updated. Thus, 
the model was updated 14 times in each epoch. After each epoch, 
the algorithm evaluated model performance on the 4772 validation 
images which were not used for training (i.e. validation accuracy) and 
the optimizer routine decided whether to continue or stop training. 

TA B L E  1  The 12 activity and two no-activity classes that we trained our image classifier to recognize. The description is our criteria for 
deciding whether or not to assign a class during manual evaluation, and the survey categories are the closest matching activities from the 
predefined list on the survey instrument

Activities Description Survey categories

Backpacking Person with large backpack or hiking poles, tents obviously in the 
backcountry

Overnight backpacking

Bird watching Close-up images of birds, person with binoculars Bird or wildlife viewing

Boating Any type of boat Boating

Camping Person or tent in an established campground, or with vehicle 
visible

Camping in campground, camping along 
the road

Fishing Person near a river with fishing gear, or holding a fish Fishing

Hiking Person with day backpack or hiking poles, in the forest, by a river 
or trail

Hiking or walking

Horseback riding Person with horse trailer, riding a horse Horseback riding

Mountain biking Person with a bike, a bike on a trail or road Bicycling on trails or roads

Rock climbing Person on a rock face, rock climbing gear Rock climbing

Swimming Person in a bathing suit in or near a river, lake or hot spring Swimming

Trail running Person in running clothes, person with hydration pack Running or jogging

Other activities Person engaging in any other activity, including working, 
motorcycling, skiing, etc.

Other activities, hunting, collecting, 
foraging, picnicking

No activity Images without people, such as landscapes NA

People no activity No obvious object to fit into an activity but a person present in 
the image

NA
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The model which achieved the best training accuracy was selected 
and used to predict the class of new photos.

We carried out the training on a workstation with an eight-core 
CPU (AMD Ryzen 2700x) and 64 GB memory. The classification and 
prediction Python scripts were based on Tensorflow and Keras APIs 
(Chollet, 2015; Martín Abadi et al., 2015) running on a single NVIDIA 
Titan Xp with 12 GB of video memory. The optimizer stopped train-
ing after 129 epochs, after training accuracy did not improve in 20 
consecutive epochs. The overall training time was 12.5 h and the 
best validation accuracy achieved was 0.88 and the loss was 0.41 
(Figure S3). The validation accuracy and loss were better than the 
training accuracy and loss in this study, which is likely due to the 
dropout layer in the CNN model.

2.3.4  |  Classifier evaluation

To evaluate model performance beyond the training data, we carried 
out two external validations. First, we randomly selected 742 of the 
Middle Fork Flickr photographs that were not used in the training (n = 
8380) and manually evaluated whether they belonged in the class with 
the greatest probability returned by the CNN model (the top-1 predic-
tion). These test photographs were stratified to represent 20% of the 
images in each top-1 prediction class, and represented 6.2% of all Flickr 
photos in the Middle Fork. Additionally, we tested the model in the 
Mountain Loop region. We predicted the activity class of all Flickr pho-
tographs acquired in this region (n = 18,350), using the model trained 
on the Middle Fork images. We randomly sampled the predicted pho-
tographs from this site using the same sampling scheme, and manually 
evaluated the activity classes (n = 491; 2.7% of the total images).

The manual evaluation consisted of two examiners inde-
pendently assigning the sampled images to their ‘true’ class and 
comparing these results to the model predictions. We evaluated 
these predictions by creating a confusion matrix and calculating sev-
eral standard metrics (precision, recall and F1 score) for each class, 
as well as summarizing overall model performance using accuracy, 
macro F1, and Cohen's unweighted Kappa (Kuhn et al., 2008).

Each of the class-level metrics that we used were calculated from 
a combination of the number of true positives (TP, images which be-
longed to an activity class and were correctly classified as belong-
ing to that class), false positives (FP, images which did not belong to 
an activity class but were incorrectly assigned to that class), false 
negatives (FN, images which belonged to an activity class but were 
incorrectly assigned to a different class) and true negatives (TN, im-
ages which did not belong to an activity class and were correctly 
not assigned to that class). Precision is the positive predicted rate 
( TP

TP+ FP
), or how many of the samples predicted as positive are actu-

ally positive. It can be interpreted, for example, as ‘How many of the 
images labelled hiking are actually images of hiking?’. Recall is the 
true-positive rate ( TP

TP+ FN
), also known as sensitivity, and represents 

how many of the positive samples are captured by the positive pre-
dictions. It answers the question ‘How many of the hiking images 
are actually captured in the hiking class predictions?’ The F1 score is 

the harmonic mean of precision and recall, creating a single metric 
of class performance. The harmonic mean gives greater weight to 
lower values, so classes will only have a high F1 score if both preci-
sion and recall are high. We chose not to focus on specificity, the rate 
at which a model correctly detects that an image does not belong to 
a particular class ( TN

TN+ FP
, true-negative rate), because metrics which 

use TN tend to be less insightful with unbalanced datasets. This is 
because minor classes will tend to have very large numbers of true 
negatives, since most of the images belong to other classes.

We summarized overall model performance by calculating accu-
racy, macro F1 score and Cohen's unweighted Kappa. Accuracy is the 
proportion of all predictions that are correct. The macro F1 score is 
the average of each individual class' F1 score, giving equal weight to 
every class. Finally, to confirm whether the model performs better 
than an uninformed guess, we measured the model's performance 
using Cohen's unweighted Kappa and carried out a one-sided test 
of the overall accuracy, which compared the overall accuracy to the 
rate of the largest class (Kuhn et al., 2008).

2.4  |  Survey comparison

To examine how well images of activities shared on Flickr, as classi-
fied by our model, represent actual rates of activity participation in the 
region, we compared our model predictions to the empirical survey 
data. For this comparison, we subset our Flickr photographs to only 
include those which were geotagged within recreation areas which we 
believed to be accessed primarily by the Middle Fork Road, exclud-
ing some locations which could be more easily accessed from a nearby 
highway. This resulted in 8396 photos. To control for users who may 
have posted multiple photographs of a single activity, we calculated 
activity photo-user-days (APUD) (following Wood et al., 2013) as the 
number of unique users posting images that were classified (using the 
top-1 prediction) as being in each activity, each day. APUD is not di-
rectly analogous to PUD, since a single user's photographs may repre-
sent multiple activities on a single day. In total, we found that the 8396 
photos reflected 2321 APUD, 1076 of which represented recreational 
activities (1245 were classified into one of the no activity classes). We 
chose to include all photographs ever posted to Flickr in the region 
because there were too few photographs posted during the months of 
the survey for a meaningful comparison (only 15 APUD representing 
recreational activities in August–October 2018). We compared total 
APUD per activity to the number of survey respondents who reported 
participating in each activity and measured correspondence between 
the two datasets by calculating Pearson's correlation.

2.5  |  Case study

Finally, to demonstrate one potential use of this model, we used 
all of our classified images from both regions to create maps of the 
frequency of recreational activities shared on Flickr. Due to the 
relatively small number of photographs representing some of the 
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activities, we focused on the diversity of activities found across the 
landscape. We did not include fishing, trail running or horseback rid-
ing in our diversity calculation because these classes were poorly 
represented in our data. We divided each study area into 2 km grid 
cells, and for each grid cell we calculated the total APUD for each 
activity, based on the top-1 prediction from the CNN. We then cal-
culated and mapped the number of distinct activities represented 
in each grid cell. Because we removed the three data-poor classes 
above and the two no activity classes, the maximum number of ac-
tivities possible in a grid cell was nine.

We related the number of distinct activities in a grid cell to underly-
ing landscape features to learn about the features of the landscape that 
drive a greater diversity of activities in each region. For this step, we 
pooled the two regions and used negative binomial regression, where 
the number of activities was modelled as a function of whether or not 
the grid cell contained a campsite, lake, picnic area, river or trail, as 
well as the minimum distance to the nearest major road, the elevation 
of the centre of the grid cell and the proportion of the grid cell which 
is designated wilderness. All variables were scaled to fall between 0 
and 1 so that coefficients could be compared directly. To avoid issues 
with multicollinearity, we checked for strong correlations between 
the variables (all were < ∣ 0.4 ∣). We compiled landscape data from 

the US Forest Service4 (campsites, picnic areas, trails and wilderness 
boundaries), Washington State Department of Transportation5 (roads), 
Washington State Geospatial Open Data Portal6 (rivers and lakes) and 
USGS Elevation Point Query Service7 (elevation), accessed using the el-
evatr package in r (Hollister, 2018). We chose to use a negative binomial 
GLM because the number of activities occurring in a cell is a discrete, 
rather than continuous variable, and our data were overdispersed so 
a Poisson model was not appropriate. We measured the predictive 
power of our model using a pseudo-R2 metric (Zuur et al., 2009).

3  |  RESULTS

3.1  |  CNN classifier

3.1.1  |  Classifier evaluation

The classifier performed well in the Middle Fork region, achiev-
ing overall accuracy of 0.71 (95% CI: 0.67–0.74; macro F1 = 0.61; 
Cohen's unweighted Kappa = 0.59) on the randomly sampled test 
images (Figure 2, Table 2). It classified images into recreational ac-
tivities better than would have been expected by chance (one-sided 

F I G U R E  2  Confusion matrix for top-1 predictions in the Middle Fork region using photographs randomly sampled with stratification 
(n = 742)
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test of the overall accuracy p < 0.0001), with large variability in the 
model's performance across activity classes (Table 2, Figure 3). The 
model performed well on images from the bird watching, hiking 
and no activity classes, with relatively high F1 scores driven by high 
recall (indicating that the model was able to successfully identify 
most images which truly represented these classes) and high pre-
cision (indicating that most of the photographs classified in these 
activities were correct). Note that the perfect F1 score for boating is 
due to an extremely small test sample (support = 1), so further test-
ing is necessary to accurately judge the performance of this minor 
class. The swimming and backpacking classes both had high recall 
but low precision, indicating that the model was able to success-
fully identify photographs that included these activities, but that it 
also incorrectly assigned many other photographs to these classes. 
Because of the low precision of these classes, their F1 scores were 
correspondingly low. The other activities class had relatively low re-
call and precision, likely due to the broadness of the category. Some 
of the minor classes (fishing, horseback riding and trail running) did 
not have F1 scores; fishing and horseback riding were never classi-
fied correctly in our test set (precision = 0, despite evaluating two 
photographs which our model classified as fishing, and 10 images 
classified as horseback riding), while trail running was not selected 
as the top-1 activity for any of the photographs in the Middle Fork 
(Table  2; Figure  2). Between activity classes, there are also nota-
ble differences in the confidence of the top-1 class assignments 
(Figure S5). Classes such as bird watching, no activity and camping 
were frequently assigned with probability > 0.9, representing the 
high confidence of the CNN model. On the contrary, backpacking 
and other activities were assigned a lower probability even when 
they were selected as the most likely class (top-1).

3.1.2  |  Regional test of classifier

The model performed almost as well in the novel Mountain Loop 
region as in the Middle Fork, with an overall accuracy of 0.60 (95% 
CI: 0.56–0.65; macro F1 = 0.59; Kappa = 0.53; p < 0.0001; Figure 3, 
Table S3, Figure S4). Compared to the Middle Fork region, the model 
performance in the Mountain Loop decreased by 12.7% (overall ac-
curacy), 3.3% (macro F1 score) and 10.2% (Kappa). While class per-
formance also varied widely in the Mountain Loop, the classes which 
performed well were not always the ones which performed well in 
the Middle Fork (Figure 3). In particular, camping performed much 
better in the Mountain Loop (F1 score = 0.92) than in the Middle Fork 
(F1 score = 0.30). This may be due to a substantially larger number 
of photos of this activity in the Mountain Loop region as compared 
to the Middle Fork. The swimming, backpacking and other activities 
classes each performed slightly better in the Mountain Loop, while 
all other classes performed somewhat worse in the novel region. 
Note that fishing only had one test photo in the Mountain Loop, so 
as with boating in the Middle Fork performance metrics are not in-
dicative of true performance.

3.2  |  Survey and model prediction comparison

We did not find a strong correlation between the log number of 
APUD and the log number of survey respondents who reported 
participating in each activity across the Middle Fork (r = 0.32; 95% 
CI: −0.31 to 0.75, Figure 4). There were far more survey respond-
ents who reported trail running or fishing, in particular, than there 

TA B L E  2  Model performance for top-1 predictions in the 
Middle Fork region using photographs randomly sampled with 
stratification (n = 742). The Support column gives the number 
of test photographs which truly belong to each activity, not the 
number of photographs which were selected for manual evaluation

F1 
score Precision Recall

Support 
(n)

Backpacking 0.27 0.17 0.75 4

Bird watching 0.87 0.91 0.83 12

Boating 1.00 1.00 1.00 1

Camping 0.30 0.21 0.50 6

Fishing — 0.00 — 0

Hiking 0.72 0.63 0.83 150

Horse riding — 0.00 — 0

Mountain biking 0.68 0.52 1.00 14

No activity 0.83 0.95 0.73 400

Other activities 0.46 0.55 0.40 103

People no activity 0.61 1.00 0.43 23

Rock climbing 0.63 0.49 0.88 24

Swimming 0.30 0.18 1.00 5

Trail running — — — 0

F I G U R E  3  Model performance by activity class in the 
Middle Fork (accuracy = 0.71) and in the Mountain Loop 
(accuracy = 0.60) regions. Activity classes are ordered by 
their F1 score in the Middle Fork region; values are provided in 
Table 2 and Table S3. Minor classes horseback riding and trail 
running have no values as none of the test images were correctly 
classified into these categories. Fishing was evaluated only in the 
Mountain Loop region (n = 1)
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were photos classified as belonging to these activities. While we 
do not have F1 scores for these classes (due to a lack of success-
ful classifications in our test set), we do know that each of these 
classes was extremely uncommon in our labelled photos from the 
Middle Fork (one and three photos, respectively, out of 6459 la-
belled images; Table S1). When we removed these two classes, as 
well as horseback riding, which also had no successful classifica-
tions in the manual evaluation, we found a much higher correla-
tion between log APUD and log survey respondents (r = 0.73; 95% 
CI: 0.12–0.94; dashed line in Figure 4). Still, the relationship is not 
perfectly linear, with some activities (such as swimming and bird 
watching) apparently under-represented in the photos and others 
(rock climbing, boating) perhaps over-represented in the photos. 
These patterns are not explained by model performance, with 
both high-performing and low-performing activities falling on 
both sides of the line (Figure 4).

3.3  |  Spatial variability in activities

We found hotspots of recreational activities in both of our study 
regions (Figure 5). In these areas, we found evidence of visitors par-
ticipating in up to nine distinct activities. These nine activities in-
clude all of the recreational activity classes that our CNN model was 
able to identify with confidence (not including the minor classes trail 
running, fishing or horseback riding, nor the two no activity classes). 
Other portions of the landscape appear to support fewer recrea-
tional activities. The number of distinct activities occurring in a grid 
cell was highly correlated with total APUD (r = 0.70), indicating that 
a greater number of activities occur in more popular areas.

The landscape features which we tested in the negative bino-
mial regression model explained some of the variability in activity 
diversity across the landscape (pseudo-R2  =  0.22). In particular, a 
greater number of activities occurred in areas near roads, at higher 
elevations, and in areas with trails, rivers, lakes or campgrounds. Of 
these landscape features, proximity to roads had the greatest effect 
size, with the number of activities present in a grid cell dropping off 
quickly as distance to the nearest road increased. The presence of 
either rivers or lakes was significantly positively correlated with the 
number of activities, though the effect size was smaller than the ef-
fect of the infrastructure variables (roads, trails and campgrounds). 
We found no significant relationship with picnic areas nor the pro-
portion of wilderness in a cell (Figure 6).

4  |  DISCUSSION

This study introduces and applies a reproducible approach for study-
ing spatial variability in nature-based recreational activities based on 
content in social media images. Our CNN model is able to classify 
images according to 12 distinct recreational activities and two no 
activity classes. This is, to our knowledge, the first open-source solu-
tion to be evaluated for this particular classification problem. While 
demonstrating that is it possible to identify individual recreational 
activities in images, we also show that there are apparent biases in 

F I G U R E  4  The number of participants in each of 12 recreational 
activities across the entire Middle Fork study region. Colours 
represent the F1 score for each class based on the manual 
evaluation in the region. Classes without an F1 score are shown 
in grey. The dashed line shows the relationship between surveys 
and APUD for activities with an F1 score, with the light grey ribbon 
showing the 95% confidence interval

F I G U R E  5  Maps showing the number of distinct activities by 2 km grid cell across the Middle Fork (a) and the Mountain Loop (b) regions, 
according to Flickr images classified by the CNN model. Study region boundaries are shown in white

(a) (b)
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which activities visitors choose to photograph and post to social 
media. Two popular recreational activities (fishing and trail running) 
in our study area in western Washington, for example, are almost 
entirely absent from Flickr photographs taken within the region. Yet, 
with careful consideration of underlying biases, there is potential for 
this approach to identify how recreational activities covary with fea-
tures of the landscape—thereby explicitly measuring how the CES is 
supported by several features of the natural and built environments. 
More broadly, this study serves as an example of how to build, dis-
tribute and apply AI to understand novel aspects of interactions be-
tween people and ecosystems.

4.1  |  Classifier performance

While the accuracy and confidence of our classifier is high overall, it 
varies substantially across the activity classes in our study, and this 
finding has broader implications for CES research using computer 
vision. Our CNN is best at recognizing popular or clearly defined 
classes such as boating and bird watching that are associated with 
recognizable objects (Table 2, Figure 3). The model struggles, mean-
while, to distinguish some activity classes that are visually similar 
to each other, such as hiking and backpacking which involve similar 
equipment and both occur on trails (Figure S6). There are also impor-
tant regional differences in model accuracy for some classes such as 
camping. Despite being trained with images from the Middle Fork 
region, images of camping are more identifiable in the Mountain 
Loop. These regional and inter-class difference in performance 
and accuracy—which are inherent to all image classifiers, including 

commercial and proprietary ones—highlight the importance of meas-
uring, reporting and addressing the potential for uncertainty in AI to 
generate biased results.

Our comparison between activity participation according to 
Flickr photographs and the on-site survey supports previous re-
search concluding that visitors share social media about their par-
ticipation in a multitude of recreational activities (Hartmann, 2019; 
Heikinheimo et al., 2017; Norman et al., 2019; Väisänen et al., 2021). 
Looking more closely at the relative frequency of each activity, we 
find that some activities are more popular among survey respon-
dents than among social media users, and vice versa. Trail running, 
fishing and swimming are less prevalent in social media images 
compared to the survey responses, whereas rock climbing is more 
popular on social media. We suspect that this is largely because vis-
itors are less likely to share photographs of certain activities on so-
cial media relative to other activities (as suggested by Ghermandi & 
Sinclair, 2019; Tenerelli et al., 2016; Wood et al., 2013). The measured 
differences may also be due to the timing of the survey. Swimming 
is more common in the summer when the survey occurred, and one 
survey day coincided with a trail running event, meaning that these 
activities are likely over-represented in the survey data. However, 
trail running events are not uncommon, and the fact remains that 
of the 6459 images we manually labelled, only one was of trail run-
ning. Additionally, the disconnect may be due partly to differences in 
time-scales of the two datasets. Due to the relatively small number 
of photographs posted to Flickr during the survey period (15 APUD 
representing recreational activities were posted between August 
and October 2018), we chose to include all photographs posted over 
the life span of the platform (2005–2018).

The general correspondence in the CNN model predictions 
between the two regions indicates that there is potential for the 
model to be applied with relative confidence to characterize rec-
reational activities across larger landscapes. However, the dis-
connects between the survey results and the images uploaded 
to social media also suggest that there are sampling biases that 
should be taken into account before the current model is gener-
alized widely. If some activities are better represented in social 
media photographs than other activities, there is potential for ac-
tivities by some user groups to be underestimated or missed en-
tirely if this method is applied without caution. If differences are 
due to prediction errors by the CNN model, then the approach 
would benefit from additional training data in the form of labelled 
images. While we found no significant relationship between F1 
scores and the number of training images, three classes were so 
uncommon in the Flickr images that we were unable to calculate 
F1 scores for them. Future studies working at sites with higher vis-
itation and thus more photographs, or incorporating more popular 
social media platforms such as Instagram, will be able to improve 
our open-source classifier by retraining the CNN model. To sup-
port CNN model development—and to advance the use of image 
recognition in CES research, more broadly—future studies should 
report common metrics for evaluating performance, identify-
ing data imbalances and guiding future training. In this study, we 

F I G U R E  6  Coefficients from the model relating diversity of 
activities to underlying landscape features in two study regions 
(n = 554, psuedo-R2 = 0.22). Coefficients which are insignificant at 
� = 0.05 are partially transparent
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include our confusion matrices and report three standard metrics 
for machine learning: namely F1 score, precision and recall. These 
key statistics facilitate open research and development of tools 
that are transparent, understandable and improvable.

4.2  |  Case study

After accounting for potential issues with the underlying social 
media data and image classifier, we were able to create maps of 
recreational activity diversity in two distinct regions of the Mount 
Baker-Snoqualmie National Forest, for the nine activities that our 
CNN model can identify with confidence. Our observation is that 
there are ‘hotspots’ that support a larger diversity of recreational ac-
tivities than their surroundings (Figure 5). These hotspots also have 
more visitors over time, evidenced by a correlation between the 
total number of activities and APUD. This may be due to more pop-
ular areas encouraging a greater diversity of activities, or because 
areas which allow a greater diversity of activities draw more people. 
Locations that support a large diversity of activities may also support 
a greater number of other CES, although this work does not directly 
measure these other types of interactions with the ecosystem.

Our analysis of activity patterns in Mount Baker-Snoqualmie 
National Forest serves to demonstrate one of many potential appli-
cations of fine-grained maps of recreational activities. Specifically, 
we show how information about the spatial variability in recreation 
can be leveraged to understand how the CES is related to the eco-
system and elements of the built environment—similar to previous 
studies which have explored a variety of methods for using social 
media and PPGIS for this purpose (Bagstad et al.,  2016; Fisher 
et al., 2019; Kliskey, 2000; Levin et al., 2017; Sherrouse et al., 2011). 
In the Mount Baker-Snoqualmie National Forest, hotspots of recre-
ational activity occur most often in areas with natural features (riv-
ers, lakes, higher elevations) supported by built infrastructure such 
as campgrounds and access via trails and roads. Of the landscape 
features which we considered, proximity to a road had the greatest 
impact on the diversity of recreational activities. While we chose to 
consider the diversity of recreational activities, due largely to the 
relatively low number of images depicting many of our more minor 
classes, future work could apply a similar model and framework to 
model individual activities. Additionally, the ‘no activity’ class could 
be further divided into various other CES types such as aesthetic 
and heritage value and analysed similarly (Havinga et al., 2020).

Specific knowledge of activity locations and how they depend 
on the underlying ecosystems can support sustainable recreation 
planning. Activity maps can help managers identify areas with 
high potential for environmental degradation and conflict between 
user groups that need mitigation or supporting infrastructure. 
Information on the relative importance of natural and built environ-
ments for recreational use allows managers to target spending on 
ecological restoration projects and the maintenance or construction 
of infrastructure improvements. In the Mount Baker-Snoqualmie 
National Forest, our analyses indicate that by improving access to 

areas which are currently undeveloped—particularly areas with nat-
ural features such as lakes or rivers—managers in the region could in-
crease the likelihood of attracting visitors who will interact with sites 
in a wider variety of ways. Furthermore, knowing which types of en-
vironmental features support a particular recreation activity could 
help practitioners argue for the value of those landscapes. This ex-
plicit valuation of public lands as ‘spatial assets’ (Jepson et al., 2017) 
gives managers and conservationists another tool with which to jus-
tify continued protection of these areas.

4.3  |  Limitations and precautions

This study highlights several important precautions when using 
social media for CES research. As our results show, not all recrea-
tional activities are represented proportionally in images posted 
to Flickr. Beyond the conclusion that certain types of activities are 
better suited to photographs than others, Flickr users are unlikely 
to be a representative sample of visitors to the study region (Ruths 
& Pfeffer,  2014). In the Middle Fork in particular, more than one-
third of the photographs posted to Flickr were uploaded by a single 
user. While we mitigated this impact by calculating APUD rather 
than working directly with total numbers of photographs, this user's 
choice about what content to upload clearly impacted our results. 
This is an extreme case, but it is important to remember that im-
ages from any location may be biased towards particular types of ac-
tivities that are popular with the dominant Flickr user-group. Future 
studies would be wise to temper this by working with images from 
multiple social media platforms (Wood et al., 2020).

Studies that store and analyse images containing people should 
follow practices that protect the privacy of individuals who appear 
in the images (Di Minin et al., 2021). Automated analyses may pro-
vide a slight advantage in this regard, as fewer of the photographs 
are actually observed by human researchers (Väisänen et al., 2021). 
However, creating training data and validating results still requires 
researchers to directly observe some photographs containing indi-
viduals who have not explicitly opted in to this research, or necessar-
ily consented to having their likeness shared publicly on social media 
in the first place. For this study, we stored Flickr images on a re-
stricted disk and then limited the number of researchers who directly 
viewed the images. Then, we chose to make our training weights, but 
not the training images themselves, public. This approach poses little 
risk to privacy. Future CES research using computer vision would be 
best served by a public repository of images and CNN models to fa-
cilitate model building with common training data and benchmarks. 
Furthermore, such a repository could address ethical and privacy 
concerns if images were crowd-sourced from individuals who vol-
untarily submitted content with explicit permissions and restrictions 
on the uses of those images (Mashhadi et al., 2021). Individuals could 
optionally self-report their recreational activities, along with other 
information about their experience and interactions with the envi-
ronment. This public repository would be invaluable for researchers 
applying computer vision to questions about CES.
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4.4  |  Technological advances

By developing an open-source and reproducible approach, this 
study overcomes several limitations of previous studies that used 
proprietary tools such as Google Vision and Clarifai (e.g. Egarter 
Vigl et al., 2021; Lee et al., 2019; Richards & Tunçer, 2018). Among 
the many issues with proprietary tools are that researchers do 
not know how closed-source models are constructed, how they 
are trained, when they change, how long they will be available, 
and at what price. In contrast, an open-source model facilitates 
science that is reproducible, testable, improvable and accessible. 
The CNN model weights that we have provided could be applied 
in research on these activities in other regions, though we also 
recommend that future studies expand and improve the CNN by 
retraining it with additional images that capture a broader range 
of situations. Furthermore, a community of practice focused on 
the goal of testing and training models for recognizing different 
types of recreational activities could ultimately create more ac-
curate and trusted tools for management compared to proprietary 
tools. Freely available tools that are properly evaluated, improved 
and run by the community could additionally build capacity within 
organizations that would otherwise be unable to afford commer-
cial solutions.

5  |  CONCLUSION

Together, computer vision and volunteered geographical information 
from social media have the potential to help overcome challenges to 
conceptualizing and measuring CES over large geographies. It is im-
portant to recognize that these techniques can suffer from biases 
created during both the data generation and analysis stages of a 
study, illustrating the danger of relying on unvalidated data sources 
and models when drawing conclusions about visitors to public lands. 
Yet, we conclude that carefully applying AI to user-generated con-
tent allows researchers and practitioners to learn about patterns of 
recreational activities across larger spatial scales than would other-
wise be feasible. In our study region, by leveraging this technique, 
we were able to demonstrate that a greater diversity of activities 
occur in parts of the landscape which exhibit certain natural and 
built features. We believe that this study and our open-source image 
classifier are important steps towards creating reproducible and ac-
tionable information about recreation, offering researchers a new 
tool to characterize one type of CES at scales which are relevant to 
environmental decision-making.
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