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Abstract

The volume of accessible geotagged crowdsourced photos has increased. Such data include
spatial, temporal, and thematic information on recreation and outdoor activities, thus can be
used to quantify the demand for cultural ecosystem services (CES). So far photo content has
been analyzed based on user-labeled tags or the manual labeling of photos. Both approaches
are challenged with respect to consistency and cost-efficiency, especially for large-scale studies
with an enormous volume of photos. In this study, we aim at developing a new method to
analyze the content of large volumes of photos and to derive indicators of socio-cultural
usage of landscapes. The method uses machine-learning and network analysis to identify
clusters of photo content that can be used as an indicator of cultural services provided by
landscapes. The approach was applied in the Mulde river basin in Saxony, Germany. All
public Flickr photos (n = 12,635) belonging to the basin were tagged by deep convolutional
neural networks through a cloud computing platform, Clarifai. The machine-predicted tags
were analyzed by a network analysis that leads to nine hierarchical clusters. Those clusters
were used to distinguish between photos related to CES (65%) and not related to CES
(35%). Among the nine clusters, two clusters were related to CES: ‘landscape aesthetics’
and ‘existence’. This step allowed mapping of different aspects of CES and separation of
non-relevant photos from further analysis. We further analyzed the impact of protected areas
on the spatial pattern of CES and not-related CES photos. The presence of protected areas
had a significant positive impact on the areas with both ‘landscape aesthetics’ and ‘existence’
photos: the total number of days in each mapping unit where at least one photo was taken
by a user (‘photo-user-day’) increased with the share of protected areas around the location.
The presented approach has shown its potential for reliable mapping of social-cultural uses
of landscapes. It is expected to scale well with large numbers of photos and to be easily
transferable to different regions.
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1. Introduction

Quantification of ecosystem services (ES) delivery is essential for the assessment of trade-
offs of land use decisions. Cultural ecosystem services (CES) are the most anthropocentric
and subjective ES, which makes them particularly difficult to quantify (Daniel et al., 2012;
Milcu et al., 2013; Gliozzo et al., 2016; La Rosa et al., 2016). A number of previous CES
studies examined stated preferences based on survey data (Gee and Burkhard, 2010; van
Berkel and Verburg, 2014) and interviews (Plieninger et al., 2013). Individual surveys and
interviews are advantageous as they encourage participation of the local stakeholders in a
CES valuation (von Heland and Folke, 2014; Delgado-Aguilar et al., 2017). Also, partici-
patory mapping such as public participation GIS (PPGIS) enhances public involvement in
identifying spatially explicate information on CES provision (Brown and Fagerholm, 2015).
Given that only 21% of reviewed CES studies used spatial information (La Rosa et al., 2016),
PPGIS provides an important step forward in an assessment of the use of spatial data for
CES. Yet surveys are still often expensive to conduct and have a limited scope on time and
space (Norton et al., 2012; Wood et al., 2013). Furthermore, they can be biased as stated
preferences often do not correspond with revealed preferences (Cord et al., 2015).

Recently an alternative indicator for preferences on landscape aesthetics and recreational
activities has been introduced to overcome the limitations of stated preferences measures.
Social media databases of geotagged photos that have been uploaded to crowdsourcing photo
repositories (e.g., Flickr and Panoramio) have been used to understand socio-cultural usages
of landscapes (Keeler et al., 2015; Gliozzo et al., 2016; Sonter et al., 2016; van Zanten et al.,
2016). These photos are used as an indicator for the revealed preferences of the general public.
Despite the limitations of the approach such as a biased user population and behavior (Ruths
and Pfeffer, 2014; Yoshimura and Hiura, 2017), previous studies using geotagged photos from
the Flickr database have shown that the visitation rate extracted from the Flickr photos
and user information matched well with the one calculated from the empirical visitor data
(Wood et al., 2013; Keeler et al., 2015; Sonter et al., 2016). This highlights the reliability of
the indicator to assess the demand for outdoor recreation and landscape aesthetics. While
different photo repositories attract different user communities, van Zanten et al. (2016) found
a high degree of correspondence among three photo repositories (i.e., Flickr, Instagram, and
Panoramio). As spatially explicit information is a prerequisite for a better understanding
of CES provision (Crossman et al., 2013; Brown and Fagerholm, 2015), geotagged photos
provide an important opportunity to quantify and map CES (Weyand et al., 2016).

Previous studies using geotagged photos in CES analyses can be grouped into three cate-
gories. The first group focuses on the spatial and temporal information of photos (Casalegno
et al., 2013; Keeler et al., 2015; Gliozzo et al., 2016; Tieskens et al., 2017). The focus of these
studies has been on the location and the users by whom the photos were taken and uploaded.
The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) recreation model
has applied the concept of photo-user-days (Sharp et al., 2016), which represents the total
number of days in each mapping unit where at least one photo was taken by a user (Wood
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et al., 2013). The InVEST recreation model has begun to be applied to various CES analy-
ses (Keeler et al., 2015; Sonter et al., 2016). A second group of the studies aims at relating
landscape context and biophysical settings with the locations of geotagged photos (Pastur
et al., 2016; Tenerelli et al., 2016; van Zanten et al., 2016; Oteros-Rozas et al., 2017). Pastur
et al. (2016), for example, related the location of the photos representing the aesthetic value
of the landscape of Southern Patagonia to biophysical characteristics such as the presence
of water bodies and vegetation types. A third group analyzes the content of the photos.
The focus of the analysis has been not only on the spatial and temporal information of the
photos but also on the thematic information such as ‘what’ users have taken and uploaded
(Minin et al., 2015). Traditionally, CES are manually classified (Richards and Friess, 2015;
Thiagarajah et al., 2015; Pastur et al., 2016; Oteros-Rozas et al., 2017). Since the manual
labeling of photos is a labor-intensive task (Minin et al., 2015), it is only applicable for a
relatively small number of photos. Richards and Friess (2015) stated that one person could
process approximately 140 photos per hour. Such a manual labeling approach is not feasible
for ‘big data’ such as the immense data available in public photo repositories.

In this study, we suggest a new framework in CES mapping based on automated content
analysis instead of manual labeling of photo content, ‘Mapping cultural ecosystem services
2.0’. The suggested approach allows the interpretation of large volumes of photos based on
their content within a feasible time frame. It focuses on contents of photos based on auto-
mated tags. A tag is a label or an annotation that provides simple and direct information
of objectives (Schmitz, 2006), and often associated with images. Tagging allows users to
manage and to share their online resources through keywords (Cattuto et al., 2007; Ander-
son et al., 2008; Tisselli, 2010). Analyses of tags are widely used in image or multimedia
annotations such as Flickr, Instagram, and Youtube (Schmitz, 2006; Cattuto et al., 2007;
Anderson et al., 2008). While Flickr provides users with tag suggestions, tagging is not
mandatory and strictly guided in Flickr, thus often leading to photos with no user-provided
tags (Sigurbjörnsson and van Zwol, 2008; Tisselli, 2010). Different languages used in tag-
ging (e.g., English: mountain, German: Berg) is another source of data inconsistency. To
overcome these problems with user-provided tags, we suggest using automated tags based
on image recognition algorithms. Recently, Richards and Tunçer (2017) showed a potential
to use automated keywords to analyze the contents of photos based on five tags provided by
Google Cloud Vision. We propose here an alternative approach that builds on the rich image
content information provided by the cloud computing platform, Clarifai1 (Goodfellow et al.,
2016; Rusk, 2016), and that uses a social network approach to identify thematic clusters of
photos.

This study aims at developing a new method to analyze the content of large volumes
of photos and to derive indicators of socio-cultural usage of landscapes. We applied the
approach in a regional case study in Germany. The objective of the study is i) to identify
users’ activities based on the contents of photos estimated by the machine-learned tags –
‘what’ are in the photos; ii) to identify CES hotspots in the study area – ‘where’ users visited
particularly for CES related themes, and iii) to analyze whether those hotspots were related
with other geographical features (i.e., protected areas).

1https://www.clarifai.com
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2. Material and methods

2.1. Study area

The study was conducted in the Mulde basin in the federal state of Saxony in Germany
(Figure 1). The Czech part of the basin (6.2% of the basin) was not included in the analysis.
The basin is covered by a mosaic of agricultural and forest patches. The largest part of the
basin is used for agricultural purposes: 53% of the area in Germany is covered with cropland,
and 7% of the area is pasture. Forest covers 26% of the basin. Urban areas (10.2%) were
excluded from the analysis since we focused on outdoor recreations outside of urban areas
(LfULG, 2017).

The Ore mountains (“Erzgebirge” in German) located in the southern part of the Mulde
basin (Figure 1) are one of the most important tourist areas in Saxony (Landestourismusver-
band Sachsen e.V., 2015). The number of tourists who stay overnight has increased since
2004, and reached more than three million overnight stays per year (Landestourismusver-
band Sachsen e.V., 2015). The main purpose of traveling to the Ore mountains is ‘nature’
(60%) followed by ‘hiking’ (58%) as named in a survey by the tourist office of the mountains
(TV Erzegebirge, 2014). Sports tourism such as winter sports (42%) and mountain biking
(42%) obtained particular attention in this region as well.

2.2. Data collection

The methodological framework for the data collection and the following analyses is pre-
sented in Supplementary Figure SF1.

2.2.1. Flickr photos

The data collection was performed on the second of January 2017 and covered all the
geotagged photos from the study area taken and uploaded between the 1st of January 2005
and the 31st of December 2016. The geotagged photos were identified and acquired through
the Flickr Application Programming Interface (API)2 based on the location information of
the photos. As the Flickr API does not allow to use a polygon as a search boundary, we
implemented a custom download function to select photos exactly within the target polygons.
For each polygon, we created the smallest bounding box covering the polygon. The photos
found in the bounding box were once again filtered by the polygon. We only considered
publicly available photos. In addition to the photos, meta information such as user id,
pictured date, and coordinates was collected. The Flickr photo repository is unsteady in the
sense that photos and meta-information can be altered any time.

2.2.2. Automatic tagging

We used an image annotation engine developed by Clarifai. The image annotation engine
of Clarifai uses machine-learning to recognize visual patterns of images and videos and assigns
tags automatically using several large deep convolutional neural networks (DCNNs) (Clarifai,
2016; Zeiler and Fergus, 2014). The DCNNs approach is one of the state-of-the-art algorithms
in image recognition (Yang and Hospedales, 2015; Guo et al., 2016; Rawat and Wang, 2017).
Another option would have been the automatic tag suggestion algorithm provided by Flickr.

2https://www.flickr.com/services/api
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Figure 1: The Mulde basin in Saxony, Germany. Colors indicate different land cover types. Also, it shows
the major urban areas in this region and the Ore mountains (“Erzgebirge” in German). The land cover
data was taken from the 2006 CORINE Land Cover data (CLC2006; Umweltbundesamt, DLR-DFD 2009),
and the data of special protection areas, special areas of conservation, nature reserves, protected landscapes
and nature conservation parks provided by the Saxonian State Agency for Environment, Agriculture and
Geology (LfULG) (LfULG, 2017).

At the time of the analysis no sufficient information on the image recognition algorithm used
by Flickr was provided3 – therefore we decided to use the well-specified image annotation
algorithm provided by Clarifai. For a detailed list of examples and the theory of deep learning

3source: https://help.yahoo.com/kb/flickr/sln7455.html
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methods for visual recognition, we refer readers to the review studies by Guo et al. (2016)
and Rawat and Wang (2017).

We used a pre-trained model (general-v1.3) provided by Clarifai to assign 20 tags per
photo together with the associated probability of each tag; note that we used the term “tag”
instead of the term “concept” in the Clarifai API document (Clarifai, 2016). We accessed
Clarifai API version 1 through the GNU R (R Core Team, 2016) package clarifai (Sood,
2016).

2.3. Analysis

2.3.1. Cluster detection in tag-network

To identify themes of photos, we investigated networks of assigned tags based on tag co-
occurrence. Networks analyses of semantic keywords have been applied in various research
fields to group keywords with similar topics and to classify trending topics such as the analysis
of scientific journal article keywords (Yi and Choi, 2012; Isenberg et al., 2017; Santonen and
Conn, 2016), or the analysis of social networks such as Twitter (Lee et al., 2011).

We assumed that photos with similar themes share similar semantic tags. Tag co-
occurrence is therefore regarded as an indicator to determine the contents of the photos.
To analyze this, first we converted a 2-mode matrix (a photo-by-tags matrix) to a 1-mode
tag co-occurrence matrix. The 1-mode matrix is a tag-by-tag matrix, in which the cells
indicate how many times each pair of tags co-occurred in a photo (Schnegg and Bernard,
1996; Begelman, 2006; Anderson et al., 2008; Sigurbjörnsson and van Zwol, 2008; Hu et al.,
2012; Mousselly-Sergieh et al., 2013). Tags that appeared five times or more (n = 1,316)
were included for further analysis because finding connections among those with fewer ap-
pearance would be illegible. Finally, we obtained a 1,316 by 1,316 co-occurrence matrix,
which transformed into an undirected tag-network. We calculated eigenvector and degree
centralities (Bonacich, 1987; Csardi and Nepusz, 2006) of each node (i.e., tag) to evaluate
the importance of them.

We hierarchically clustered the tags and searched for the optimum number of the clusters.
There exist a variety of algorithms for detecting clusters (i.e., often called communities)
within networks (e.g., Fortunato et al., 2004; Luke, 2015; Yang et al., 2016). In this study, we
used two widely-used algorithms and inter-compared the results: the Fast-greedy algorithm
(Newman, 2004; Clauset et al., 2004) and the Walktrap algorithm (Pons and Latapy, 2005).

Fast-greedy algorithm The Fast-greedy algorithm is a clustering algorithm that
merges clusters based on the expected improvement of modularity (see Section 2.3.1) for
each pair of clusters (Newman, 2004). At each step the clusters are merged to maximally
increase the modularity until no further improvement can be reached.

Walktrap algorithm The Walktrap algorithm is based on distance measured by ran-
dom walks (Pons and Latapy, 2006). The key idea is that short random walks tend to stay in
the closely connected parts (“trapped”), which can be considered as a cluster. This feature
makes possible to efficiently identify clusters without having computationally intensive cal-
culations based on eigenvectors (Pons and Latapy, 2005). The distance between node i and
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j (rij) is calculated based on the probability, P t
ij, to go from node i to node j in a random

walk of length t :

rij =

√√√√ n∑
k=1

(P t
ik − P t

jk)2

d(k)
, (1)

where n is the number of nodes in the network and d(j) is the degree of j. Note that
the distance is adjusted by d(j), as the random walk has a higher probability to go to nodes
with many connections (i.e., high-degree). The distance between two clusters C1 and C2 of
the network is defined similarly:

rC1C2 =

√√√√ n∑
k=1

(P t
C1k
− P t

C2k
)2

d(k)
(2)

with the probability P t
Cj to go from cluster C to node j in t steps

P t
Cj =

1

|C|
∑
i∈C

P t
ij. (3)

Ward’s hierarchical clustering method (Ward Jr, 1963) was used to merge clusters. Note
that, in each step, only the adjacent clusters (i.e., having at least an edge between them)
are merged to reduce computational time. Accordingly, it ensures that the merged clusters
are connected to each other (Pons and Latapy, 2006).

Modularity The fitness of the detected clusters was evaluated by a criterion called
‘Modularity (Q)’ (Newman, 2004; Newman and Girvan, 2004), which has been widely used
in many cluster detection algorithms (Fortunato et al., 2004; Danon et al., 2005; Pons and
Latapy, 2006; Newman, 2006). The key idea is that the proportion of edges inside the same
cluster (internal edges) is relatively high compared to the proportion of edges between the
clusters if the clusters were appropriately assigned. Following Newman and Girvan (2004),
we calculated Q as

Q =
∑
i

(eii − a2i ), (4)

where k is the number of clusters and e is a k × k symmetric matrix. An element of
the matrix e (eii) is the fraction of edges in the network that connects two clusters i and
j. For a given division of a network into k clusters, the modularity measures the number of
within cluster edges, relative to the expected value of random cluster edges with the same
quantity in a cluster. If the number of within cluster edges is smaller than the random
model, the modularity is close to zero. By increasing the number of clusters (k), one or two
peaks of modularity are often found (Newman and Girvan, 2004). When the modularity is
at its maximum peak, it is considered that the corresponding k is the optimal number of
the clusters. For the robustness of the result, a Monte Carlo approach was used (Landau
and Binder, 2005). For 100 iterations, we sampled 80% of the tags without replacement and
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detected clusters, then calculated modularity to get the confidence interval of the modularity.
The optimal cluster size was chosen based on the median value of the Monte Carlo modularity.
The names of the clusters were assigned by the researchers based on the interpretation of
the 10 tags with the highest eigenvector centrality in each cluster.

The tag network analysis was done in R version 3.3.1 (R Core Team, 2016) using the
package igraph (Csardi and Nepusz, 2006) and UserNetR (Luke, 2017). The visualized
position of the nodes in the network was determined by Force Atlas2 multi-gravity algorithm
via the software Gephi (Bastian et al., 2009; Jacomy et al., 2014). We used the package
rgexf (Yon et al., 2015) to transfer the R network data to Gephi.

2.3.2. Assigning dominant cluster to photos

Photos were assigned to a tag cluster based on a weighted majority voting. We assigned
weights to tags based on the probability information supplied by the Clarifai engine for
each tag to consider the credibility of the tags as well as to avoid ties. The proportion
of the weighted tags belonging to the dominant cluster is the supporting ratio, which was
calculated as

Supporting ratio(%) = max (Wtagsk )/
∑
k

(Wtagsk )× 100 , (5)

where Wtagsk is the weighted number of tags for each cluster and k is the index of clusters;
The weighted Wtagsk equals to the number of the tags (Wtagsk) multiplied by the certainty
of the tagging (probsk) provided by the Clarifai engine. The higher the supporting ratio
for a photo, the more tags belonging to the same cluster in the photo. The proportion of
photos in each of the tag clusters were mapped at a 2.5 km grid pixel for visualization using
R version 3.3.1 (R Core Team, 2016) packages raster (Hijmans, 2016) and rgdal (Bivand
et al., 2017b).

Uncertainty assessment We considered two aspects of uncertainties: tagging uncer-
tainty and dominant cluster assignment uncertainty. First, to evaluate the performance of
automatic tagging, we manually analyzed tags for 635 randomly sampled photos (approx.
5% of the dataset). Compared to the human-interpreted tags, the machine-assigned tags
were categorized into three groups: ‘relevant’, ‘possibly relevant’ (i.e., a tag is indirectly
related to the content of the photo), and ‘irrelevant’. We assumed that ‘relevant’ and ‘pos-
sibly relevant’ are ‘correct’ and ‘irrelevant’ are ‘incorrect’. We calculated the Hamming loss
(Tsoumakas et al., 2010) of the tagging which is an accuracy measure for multi-label classi-
fication. The Hamming loss ranges between zero (all tags are correct) and one (all tags are
incorrect). Second, the uncertainty of the dominant cluster assignment was evaluated using
the distributions of the supporting ratios for the dominant clusters.

2.3.3. Spatial distribution of photo-user-days

The photo-user-days were calculated as the total annual days that a photographer took at
least one photo within a cell in the study area (Sharp et al., 2016). By using the photo-user-
days instead of the total number of photos, one avoids a bias caused by an exceptionally high
number of photos by a single photographer in a single day. Thus, this metric gives a good
indication of the number of visitors to the area (Wood et al., 2013) in the study region during
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the analyzed time period. In this study, we used the metric to give a spatial summary of the
usage of the visited areas. Furthermore, we compared the photo-user-days calculated based
on the whole data set (PUDall) and the one calculated based on the CES-related photos
(PUDces) to investigate a difference in the two maps. Herein CES related photos refer to
the photos in clusters “landscape aesthetics” and “existence”. The patterns of PUDall and
PUDces were quantified by Pearson’s correlation.

To further evaluate the spatial information of the Flickr-photo-based indicator, we used
aggregated information on the location of special protection areas, special areas of conser-
vation, nature reserves, protected landscapes and nature conservation parks provided by the
Saxonian State Agency for Environment, Agriculture and Geology (LfULG) (LfULG, 2017).
Note that we combined the detailed protection-classes into a generic “protected area” class.
The protected area polygons were intersected with the 1 × 1 km raster grid following the
method suggested in Seo et al. (2016) which resulted in the fractional map of the protected
area. We tested for the influence of the presence of protected areas (predictor) on the two
groups (PUDall and PUDces) (response) using a quasi-poisson generalized linear model. The
model was adopted to account for the observed over-dispersion in the underlying count pro-
cess (Zuur et al., 2009). Prior to the main analysis, spatial autocorrelation of the residuals
was tested by Moran’s I, which was insignificant; therefore we did not explicitly consider the
autocorrelative terms. We used the R packages raster (Hijmans, 2016), rgeos (Bivand and
Rundel, 2018), sp (Pebesma and Bivand, 2005), and spdep (Bivand et al., 2017a) in this
step of the analysis.

3. Results

During the studied period (2005–2016), 12,635 photos were uploaded by 725 users within
the study area. The average number of the uploaded photos per user was 17.43. The
distribution was right-skewed: the maximum number of photos uploaded by an individual
user was 1,620, whereas 259 users uploaded only a single photo during the whole period.
During the studied period, 27.5% of the users posted photos of the Mulde basin in multiple
years. The number of the uploaded photos increased over the study period with a sharp
increase in 2010. The largest number of photos was taken in May (n = 1,893, 15%) followed
by June (n = 1,762, 13.9%) and August (n = 1,527, 12.1%) (Supplementary Figure SF2).
The number of user-provided tags was also right skewed: in our database, 2,555 photos
(20.2%) had no user-provided tag, and 590 photos had only one user-provided tag. The
average number of user-provided tags was 10.03, and the maximum number of user-provided
tags assigned in our database was 74 (cf. the maximum number of tags allowed in Flickr is
75). This uneven and skewed distribution of user-provided tags made use of user-provided
tags unreliable for our analysis and led to the use of automated tagging from Clarifai.

3.1. Photo contents analysis – tagging and tag co-occurrence network analysis

The Clarifai engine assigned 20 tags per photo (examples provided in Supplementary
Figure SF3). In total, 2,317 unique tags were assigned to the 12,635 photos. The most
frequently assigned tag was ‘no person’ (assigned to 9,445 photos, 74.8%) followed by ‘out-
doors’ (assigned to 8,550 photos, 67.7%), ‘nature’ (assigned to 6,362 photos, 50.3%), and
‘landscape’ (assigned to 6,181 photos, 48.9%) (Supplementary Table ST1). The 1,316 tags
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that appeared more than five times were included in the tag-network analysis. For the 635
randomly sampled photos, the average Hamming loss of the assigned tags, i.e., the ratio
of the mislabeled tags, was 0.196, which can be interpreted as 80.4% accuracy. The lowest
Hamming loss was found for photos associated with the cluster “landscape aesthetics” (0.13),
whereas the highest Hamming loss was associated with the photos related to the cluster “cul-
tural landmark” (0.39). The tagging accuracy was higher in photos in CES-related clusters
(“landscape aesthetics” and “existence”) compared to other clusters (Supplementary Table
ST2).

The cluster composition with the Fast-greedy algorithm did not change with the increas-
ing number of clusters larger than four (Supplementary Figure SF4). This is in line with
results of Yang et al. (2016) that showed that the Fast-greedy algorithm underestimates the
number of subgroups, whereas the Walktrap algorithm is more accurate regardless the net-
work size - even for networks with more than 1000 nodes. Based on this result we continued
using the Walktrap algorithm for the tag network analysis.

The co-occurrence of tags in photos was represented in a 1-mode co-occurrence matrix.
The most frequent pair was ‘no person’ and ‘outdoors’ shown in 58.8% of the photos (n
= 7,428), followed by the pairs of ‘nature’ and ‘outdoor’ (45.2%; n = 5,713), ‘nature’ and
‘no person’ (44.7%; n = 5,642), and ‘landscape’ and ‘no person’ (43.5%; n = 5,499) (Table
ST1). The mean and the median degrees (i.e., the number of links) of the tag-network were
146.1 and 88, respectively. In Figure 2, we visualize the tag network with tags with higher
eigenvector centrality located in the center. Modularity of the tag network increased sharply
with increasing number of tag clusters up to nine (Q = 0.193), then gradually decreased
(Supplementary Figure SF5). The number of clusters (k) was fixed as nine in the following
analyses. The number of tags per cluster was unevenly distributed (Figure 2 and Table 1):
296 tags in the largest cluster and 31 in the smallest cluster.

Clusters were denominated based on 10 tags with the highest eigenvector centrality (dom-
inantly appeared tags) in each cluster (Table 1). Among the nine clusters, two clusters were
related to CES: “landscape aesthetics” and “existence”. The “landscape aesthetics” cluster
included tags representing scenery, whereas the “existence” cluster included tags for specific
species such as ‘butterflies’ or ‘flower’. The other clusters involved site-specific activities,
but were related to non-CES activities such as “car racing” or “concerts”. An increase in
the number of clusters can be used to reveal even more specific groups (Figure 3).

Particularly high proportions of the CES clusters, “landscape aesthetics” and “existence”,
were identified in proximity to the Ore mountains in the southern part of the basin (Figure 4).
This area is well known for outdoor activities (Hodeck and Hovemann, 2016). The proportion
of the “car racing” cluster was high in the western part of the basin where the popular racing
circuit ‘Sachsenring’ is located between Zwickau and Chemnitz (Figure 1). Proportions of
“equipment” and “transportation” clusters were high in the northern part of the basin.

Photos were frequently assigned tags from multiple clusters. Regarding the dominant
cluster, 65.1% of the photos belonged to CES-related clusters: 53.7% of the photos to the
cluster “landscape aesthetics” and 11.4% to “existence” (Figure 3). The dominant clusters
of the remaining 34.9% of the photos were not related with CES. The supporting ratio of
the dominant cluster is the largest proportion in each photo (Eq. 5). The highest supporting
ratio was for the cluster “car racing” (60-80%) (Supplementary Figure SF7). Photos from
the CES-related clusters had mostly a supporting ratio in the range of 40-60%; these photos
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Figure 2: The tag-network of the Flickr photos. Nodes represent the machine-learned tags (n = 1,316) and
links represent co-occurrence of tags in the photos. The size of a node and a label is scaled by eigenvector
centrality, i.e., larger nodes were higher in centrality in the tag-network (Supplementary Table ST1). The
colors indicate the tag clusters determined by Walktrap algorithm (k = 9): (a) dark green: landscape
aesthetic, (b) green: existence, (c) dark yellow: indoors/people, (d) brown: car racing, (e) orange: festival,
(f) pink: cultural landmark, (g) purple: transportation, (h) red: concerts, (i) dark red: equipment; this color
scheme is applied to all following graphics.
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Table 1: The top 10 tags with high eigenvector centrality in each cluster. The clusters “landscape aesthetics”
and “existence” are considered as CES-related. Numbers in the parentheses are the total number of the tags
of the clusters.

landscape aesthetic existence indoors/people car racing festival
(248) (296) (230) (66) (92)

no person leaf people fast man
outdoors flora adult drive group
nature fall indoors wheel festival
wood season woman race education

summer fair weather portrait driver many
tree bright wear car election

travel wild child hurry battle
landscape growth room action music

grass sun girl competition administration
daylight rural furniture machine school

cultural landmark transportation concert equipment
(231) (56) (31) (66)

old transportation system band industry
art vehicle performance technology
one engine musician equipment

family road pop steel
retro track concert street

religion steam singer pollution
traditional power instrument vintage

design diesel guitarist production
antique shipment guitar train
museum carriage stringed instrument calamity
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Flickr tags (k=14) 

k = 9

k = 14

Existence Landscape aesthetics Equipment Transp- 
ortation

Cultural 
landmark

Indoors/  
People

(1274)(131) (328) (1445) (6787) (261) (417) (490) (1468)

Con-
cert FestivalCar-

racing

Figure 3: The dendrogram of the hierarchically clustered tags cut at the number of clusters (k) is 14. The
dashed line in the middle and the colors in the bottom line and the boxes refer to the nine clusters (k=9) as
used in this study. Numbers in the parentheses are the total number of the photos of the clusters.

may have been involved in multiple clusters (e.g., a photo with a car on the unpaved road
might involve trees and therefore get also tags from the “landscape aesthetics” cluster).

The correlation between the photo-user-days of the total photos and the CES photos at
the 1 × 1 km resolution was high (r = 0.92, Supplementary Figure SF6). However, the cor-
relation differed strongly across the different CES types: the “landscape aesthetics” cluster
was strongly correlated with the number of total photos (r = 0.91), while the “existence”
cluster showed a different distribution (r = 0.51, Supplementary Figure SF6).

The presence of protected areas had a significant positive influence on the photo-user-days
for both “existence” and “landscape aesthetics” (Supplementary Table ST3). Interestingly,
the presence of protected areas had also a significant positive influence on the photo-user-
days of the non-CES related photos. The number of photo-user-days increased with the
share of protected areas around the location. The explanatory power of protected areas
for photo-user-days measured by the explained deviance was however low for all clusters:
“landscape aesthetics” (5.5%), “existence” (1.1%), and non-CES related photos (1.7%).

4. Discussion

Geotagged photos obtained from social media data have received increasing attention
in identifying CES hotspots (Wood et al., 2013; Pastur et al., 2016; Tenerelli et al., 2016).
However, the content of the photos has been so far often disregarded due to time and
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Figure 4: The average proportion of each cluster (k = 9) in the photos per cell (2.5 km×2.5 km). The more
vivid colors indicate the higher proportion of a cluster in the photos of the cells.
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resource limitations (Richards and Friess, 2015; Thiagarajah et al., 2015; Pastur et al., 2016;
Richards and Tunçer, 2017). The combination of automatic tagging and tag-network analysis
proposed in this study opens up a feasible way to analyze the contents of a large volume of
photos. With the proposed method, we were able to distinguish detailed themes of photos
(i.e., CES-related vs. non-CES-related themes (Table 1)) and to reproduce patterns in
accordance with the ecological and cultural characteristics of the Mulde water basin in short
time. This approach could be used to improve the commonly used ES evaluation tool,
InVEST recreational model (Sharp et al., 2016), which calculates the photo-user-days based
on the total number of geotagged photos with no consideration of the photo contents.

Content analysis of crowdsourced photos has a high potential to improve our under-
standing of the socio-cultural usage of the landscape. Despite this high potential, concerns
remain regarding the representativeness of populations who uploaded photos in social media
databases (Ruths and Pfeffer, 2014). However, given the limitations of geotagged real-time
data collection within a limited time at a large scale (e.g., surveys and interviews) (Ford
et al., 2016), the use of photo repositories offers an important opportunity to derive ad-
ditional information on CES hotspots and detailed contents of those hotspots. Through
content analysis, land managers can obtain not only information on hotspots where users
frequently visit, but also on the activities performed by landscape users. This information
allows land managers to respond accordingly, e.g. by restricting access to a specific vulner-
able area or by providing facilities to steer the use of the landscape. Our approach offers
a potential for managing landscapes used for outdoor recreation given a large number of
crowdsourced photos available over the globe.

A major benefit of using automatic tagging is time efficiency in characterizing the contents
of photos (Richards and Tunçer, 2017). Assigning 20 tags per photo for the 12,635 photos
took approximately 3 hours, which is several orders of magnitude faster than the manual
labeling (e.g., 140 photos per hour per researcher (Richards and Friess, 2015)). In our study,
we used an externally trained classifier by machine-learning algorithms, instead of user-
provided tags from Flickr since these were inconsistent and subjective. If we had used the
Flickr tags, 20.2% of the photos would have been ignored because the users did not add tags
to their photos. Furthermore, the unrestricted and non-standard characteristics of Flickr
tagging (e.g., the number of tags per photo and language for tagging) potentially hinders
interpretation of tags (Anderson et al., 2008; Tisselli, 2010). We, therefore, question the use
of user-provided tags, e.g., for the pre-selection of photos (van Zanten et al., 2016).

However, there remained uncertainties in automatic tagging and cluster grouping. Man-
ual validation of tags showed that automatic tagging is reliable - the 19.6% of tags were
incorrect. Among photos, photos in the “landscape aesthetic” cluster showed the highest
accuracy in automatic tagging. Furthermore, increasing tagging accuracy is expected due
to the recent development of the research on artificial intelligence, for example, considering
spatial and temporal contexts of photos (Weyand et al., 2016). Also, even though a single
tag did not match with the photo, we assumed that the theme of the photos was represented
by the combination of tags, not by a single tag. Co-occurrence of the tags ‘fall’ and ‘winter’,
for instance, needs to be interpreted as “cold season of the year”.

For interpretation of tags, it should also be noticed that each tag can have multiple
attributes assigned based on the results of the network analysis. For example, a tag, ‘tree’,
is clustered in the “landscape aesthetic” cluster, but it does not automatically mean that
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the tag, ‘tree’, cannot be used in other clusters. It means that the tag, ‘tree’, appeared
more frequently with those such as ‘outdoors’ and ‘nature’ from the “landscape aesthetic”
cluster rather than those such as ‘leaf’ and ‘flora’ from the “existence” cluster. The main
difference between the “landscape aesthetics” and “existence” clusters in our dataset was the
scale of photos. Photos included in the “existence” cluster were mainly macro photography
(i.e., extreme close-up or zoom-in photography). We assumed that the close-up photography
emphasizes the meaning of the specific subject more (so-called its “existence”) compared
to the zoom-out photos. For photos in the CES clusters - that are all taken in natural
environments - some overlap between the clusters seems logical. A photo of a butterfly taken
outdoors would be likely to contain tags from both “landscape aesthetics” (e.g., nature) and
“existence” clusters (e.g., butterfly, insect). Also, CES are interconnected (Daniel et al.,
2012). The location of the split in the dendrogram is much below than the splits of the other
lumped clusters in the hierarchical structure of clusters (Figure 3), which emphasizes that
the two clusters shared similar features. Further research should consider how the scale of
photos and the shared features should be dealt in CES research.

In our study, we identified nine clusters. The nine clusters selected in our case may
not be directly applicable to other regions where different activities might be dominant.
The decision about the number of clusters based on the co-occurrence of tags determines
the thematic resolution of the further analysis. By increasing the number of clusters, one
could get a more detailed list of CES as it breaks the large cluster into several sub-groups
(Figure 3). If the number of the clusters in our case study was changed to fourteen instead
of nine, the cluster “landscape aesthetics” would be further divided into two sub-groups
(i.e., “agricultural land-based scenery” and “non-agricultural land-based scenery”), and the
cluster “indoors/people” related with human activities, in general, was divided into “outdoor
activities” and “indoors activities” (Figure 3). If the number of clusters was reduced to five,
only a single CES would be present. Relying on a technical criterion such as modularity
provides some guidance but needs to be thoroughly investigated.

Also, further research will analyze how strongly CES-related activities differ in space
in relation to the landscape and socio-cultural settings. We compared the distribution of
clusters with protected areas, but it can be further expanded with other landscape properties
– such as terrain, a presence of water bodies, land use configuration but also accessibility
and touristic infrastructure - that co-occur with these activities in space. It should also be
explored how CES types differ with user groups such as tourists, elderly visitors, hikers,
bikers, skiers, and visitors with kids. This information would enable a better representation
of CES in landscape planning and spatially explicit trade-off analysis.

A limitation of the geotagged photos as an indicator for CES assessments can, however,
be the limited coverage of different types of CES. The identified importance of landscape
aesthetics as the main content of photos taken is in line with the recognition of landscape
scenic beauty as the most popular motivation for photography (Richards and Friess, 2015),
and the observation that tourists tend to value especially aesthetic values and recreation
opportunities (Zoderer et al., 2016). We have distinguished different CES themes on the
basis of unlabeled photos and shown that the spatial pattern of the different CES-related
photos differs. However, we should note here that photo taking is limited in some recreation
activities such as skiing (Wood et al., 2013; Tenerelli et al., 2016) and also other types of
CES such as religious activities. Also, motivations for photos can differ even though a photo
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contains similar features. A photo with a tree can represent the landscape aesthetic, but also
the religious meaning depending on the society (Byers et al., 2001). Those hidden meaning
could be difficult to be discovered by the content itself. Therefore, motivations for outdoor
activities cannot be directly compared to the number of photos taken or the photo-user-
days. Combinations with other methods to reveal CES can be beneficial when motivations
for certain activities are questioned. There may be the potential need to link the geotagged
photos based indicator to surveys. Thereby it should be possible to establish a better link
and to quantify the reliability and the potential bias of our approach.

5. Conclusion

Geo-tagged photos in social media repositories such as Flicker provide a rich source of
information on the perception and use of landscapes from a CES perspective. We were able to
show that an analysis of the content of the photos allows to distinguish not only between non-
CES and CES related photos but also to distinguish between different dimensions of CES.
The combination of deep convolutional neural networks to tag photos with a social network
analysis of the tag clouds led to reliable results. The presented approach is relatively fast,
expected to scale well with large numbers of photos and to be easily transferable to different
regions. It offers, therefore, a huge potential for the spatial explicit monitoring of CES
activities at landscape and regional scale. An analysis of landscape properties in hotspot
areas can provide additional information which landscape features affect the usability of the
landscape. Further research should aim at quantifying the link between photo content and
motivation to improve the reliability of the indicator.
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