63 research outputs found

    Positron Options for the Linac-Ring LHeC

    No full text
    ISBN 978-3-95450-115-1 - http://accelconf.web.cern.ch/AccelConf/IPAC2012/papers/weppr076.pdfThe full physics program of a future Large Hadron electron Collider (LHeC) requires both pe+ and pe- collisions. For a pulsed 140-GeV or an ERL-based 60-GeV Linac-Ring LHeC this implies a challenging rate of, respectively, about 1.8 *10 15 or 4.4 *10 16 e+/s at the collision point, which is about 300 or 7000 times the past SLC rate. We consider providing this e+ rate through a combination of measures: (1) Reducing the required production rate from the e+ target through colliding e+ (and the LHC protons) several times before deceleration, by reusing the e+ over several acceleration/ deceleration cycles, and by cooling them, e.g., with a compact tri-ring scheme or a conventional damping ring in the SPS tunnel. (2) Using an advanced target, e.g., W-granules, rotating wheel, sliced-rod converter, or liquid metal jet, for converting gamma rays to e+. (3) Selecting the most powerful of several proposed gamma sources, namely Compton ERL, Compton storage ring, co- herent pair production in a strong laser, or high-ïŹeld undulator radiation from the high-energy lepton beam. We describe the various concepts, present example parameters, estimate the electrical power required, and mention open questions

    Design of a Polarised Positron Source Based on Laser Compton Scattering

    Full text link
    We describe a scheme for producing polarised positrons at the ILC from polarised X-rays created by Compton scattering of a few-GeV electron beam off a CO2 or YAG laser. This scheme is very energy effective using high finesse laser cavities in conjunction with an electron storage ring.Comment: Proposal submitted to the ILC workshop, Snowmass 2005. v2: note number adde

    The CLIC Positron Sources Based on Compton Schemes

    No full text
    International audienceThe CLIC polarized positron source is based on a positron production scheme in which polarized photons are produced by Compton process. Compton backscattering happens in a so-called "Compton ring" where an electron beam of 1.06 GeV interacts with a powerful laser beam amplified in an optical resonator. The circularly-polarized gamma rays are sent on to a target, producing pairs of longitudinally polarized electrons and positrons. An Adiabatic Matching Device maximizes the capture of the positrons. A normal-conducting 2 GHz Linac accelerates the beam up to 2.424 GeV before injection into the Pre-Damping Ring (PDR). The nominal CLIC bunch population is 4.4x10**9 particles per bunch. Since the photon flux coming out from a "Compton ring" is not sufficient to obtain the requested charge, a stacking process is required in the PDR. Another option is to use a "Compton Energy Recovery Linac" where a quasi-continual stacking in the PDR could be achieved. A third option is to use a "Compton Linac" which would not require stacking. We describe the overall scheme as well as advantages and constraints of the three different options

    The CLIC positron source based on compton schemes

    Get PDF
    The CLIC polarized positron source is based on a positron production scheme in which polarized photons are produced by a Compton process. In one option, Compton backscattering takes place in a so-called “Compton ring”, where an electron beam of 1 GeV interacts with circularly-polarized photons in an optical resonator. The resulting circularly-polarized gamma photons are sent on to an amorphous target, producing pairs of longitudinally polarized electrons and positrons. The nominal CLIC bunch population is 4.2x109 particles per bunch at the exit of the Pre-Damping Ring (PDR). Since the photon flux coming out from a "Compton ring" is not sufficient to obtain the requested charge, a stacking process is required in the PDR. Another option is to use a Compton Energy Recovery Linac (ERL) where a quasicontinual stacking in the PDR could be achieved. A third option is to use a "Compton Linac" which would not require stacking. We describe the overall scheme as well as advantages and constraints of the three options

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb−1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC

    CLIC Polarized Positron Source Based on Laser Compton Scattering

    Get PDF
    We describe a possible layout and parameters of a polarized positron source for CLIC, where the positrons are produced from polarized gamma rays created by Compton scattering of a 1.3-GeV electron beam off a YAG laser. This scheme is very energy effective using high finesse laser cavities in conjunction with an electron storage ring. We point out the differences with respect to a similar system proposed for the ILC

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    • 

    corecore