22 research outputs found

    Author Correction:The responses of cancer cells to PLK1 inhibitors reveal a novel protective role for p53 in maintaining centrosome separation (Scientific Reports (2017) DOI: 10.1038/s41598-017-16394-2)

    Get PDF
    The original version of this Article contained a typographical error in the spelling of the author Adrian T. Saurin, which was incorrectly given as Adrian Saurin. This has now been corrected in the PDF and HTML versions of the Article, and in the accompanying Supplementary Material

    Characterisation of the androgen regulation of glycine N-methyltransferase in prostate cancer cells

    Get PDF
    The development and growth of prostate cancer is dependent on androgens; thus, the identification of androgen-regulated genes in prostate cancer cells is vital for defining the mechanisms of prostate cancer development and progression and developing new markers and targets for prostate cancer treatment. GlycineN-methyltransferase (GNMT) is aS-adenosylmethionine-dependent methyltransferase that has been recently identified as a novel androgen-regulated gene in prostate cancer cells. Although the importance of this protein in prostate cancer progression has been extensively addressed, little is known about the mechanism of its androgen regulation. Here, we show that GNMT expression is stimulated by androgen in androgen receptor (AR) expressing cells and that the stimulation occurs at the mRNA and protein levels. We have identified an androgen response element within the first exon of theGNMTgene and demonstrated that AR binds to this elementin vitroandin vivo. Together, these studies identify GNMT as a direct transcriptional target of the AR. As this is an evolutionarily conserved regulatory element, this highlights androgen regulation as an important feature of GNMT regulation.</jats:p

    LRH-1 drives colon cancer cell growth by repressing the expression of the <i>CDKN1A</i> gene in a p53-dependent manner

    Get PDF
    Liver receptor homologue 1 (LRH-1) is an orphan nuclear receptor that has been implicated in the progression of breast, pancreatic and colorectal cancer (CRC). To determine mechanisms underlying growth promotion by LRH-1 in CRC, we undertook global expression profiling following siRNA-mediated LRH-1 knockdown in HCT116 cells, which require LRH-1 for growth and in HT29 cells, in which LRH-1 does not regulate growth. Interestingly, expression of the cell cycle inhibitor p21 (CDKN1A) was regulated by LRH-1 in HCT116 cells. p21 regulation was not observed in HT29 cells, where p53 is mutated. p53 dependence for the regulation of p21 by LRH-1 was confirmed by p53 knockdown with siRNA, while LRH-1-regulation of p21 was not evident in HCT116 cells where p53 had been deleted. We demonstrate that LRH-1-mediated p21 regulation in HCT116 cells does not involve altered p53 protein or phosphorylation, and we show that LRH-1 inhibits p53 recruitment to the p21 promoter, likely through a mechanism involving chromatin remodelling. Our study suggests an important role for LRH-1 in the growth of CRC cells that retain wild-type p53

    p53 controls expression of the DNA deaminase APOBEC3B to limit its potential mutagenic activity in cancer cells.

    Get PDF
    Cancer genome sequencing has implicated the cytosine deaminase activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) genes as an important source of mutations in diverse cancers, with APOBEC3B (A3B) expression especially correlated with such cancer mutations. To better understand the processes directing A3B over-expression in cancer, and possible therapeutic avenues for targeting A3B, we have investigated the regulation of A3B gene expression. Here, we show that A3B expression is inversely related to p53 status in different cancer types and demonstrate that this is due to a direct and pivotal role for p53 in repressing A3B expression. This occurs through the induction of p21 (CDKN1A) and the recruitment of the repressive DREAM complex to the A3B gene promoter, such that loss of p53 through mutation, or human papilloma virus-mediated inhibition, prevents recruitment of the complex, thereby causing elevated A3B expression and cytosine deaminase activity in cancer cells. As p53 is frequently mutated in cancer, our findings provide a mechanism by which p53 loss can promote cancer mutagenesis

    Expression of CDK7, cyclin H and MAT1 is elevated in breast cancer and is prognostic in estrogen receptor- positive breast cancer

    Get PDF
    Purpose: CDK-activation kinase (CAK) is required for the regulation of the cell-cycle and is a trimeric complex consisting of Cyclin Dependent Kinase 7 (CDK7), Cyclin H and the accessory protein, MAT1. CDK7 also plays a critical role in regulating transcription, primarily by phosphorylating RNA polymerase II, as well as transcription factors such as estrogen receptor-α (ER). Deregulation of cell cycle and transcriptional control are general features of tumor cells, highlighting the potential for the use of CDK7 inhibitors as novel cancer therapeutics. Experimental Design: mRNA and protein expression of CDK7 and its essential co-factors cyclinH and MAT1, were evaluated in breast cancer samples to determine if their levels are altered in cancer. Immunohistochemical staining of >900 breast cancers was used to determine the association with clinicopathological features and patient outcome. Results: We show that expression of CDK7, cyclinH and MAT1 are all closely linked at the mRNA and protein level and their expression is elevated in breast cancer compared with the normal breast tissue. Intriguingly, CDK7 expression was inversely proportional to tumour grade and size and outcome analysis showed an association between CAK levels and better outcome. Moreover, CDK7 expression was positively associated with ER expression and in particular with phosphorylation of ER at serine 118, a site important for ER transcriptional activity. Conclusions: Expression of components of the CAK complex, CDK7, MAT1 and Cyclin H are elevated in breast cancer and correlates with ER. Like ERα , CDK7 expression is inversely proportional to poor prognostic factors and survival

    Co-regulated gene expression by oestrogen receptor α and liver receptor homolog-1 is a feature of the oestrogen response in breast cancer cells.

    Get PDF
    Oestrogen receptor α (ERα) is a nuclear receptor that is the driving transcription factor expressed in the majority of breast cancers. Recent studies have demonstrated that the liver receptor homolog-1 (LRH-1), another nuclear receptor, regulates breast cancer cell proliferation and promotes motility and invasion. To determine the mechanisms of LRH-1 action in breast cancer, we performed gene expression microarray analysis following RNA interference for LRH-1. Interestingly, gene ontology (GO) category enrichment analysis of LRH-1-regulated genes identified oestrogen-responsive genes as the most highly enriched GO categories. Remarkably, chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq) to identify genomic targets of LRH-1 showed LRH-1 binding at many ERα binding sites. Analysis of select binding sites confirmed regulation of ERα-regulated genes by LRH-1 through binding to oestrogen response elements, as exemplified by the TFF1/pS2 gene. Finally, LRH-1 overexpression stimulated ERα recruitment, while LRH-1 knockdown reduced ERα recruitment to ERα binding sites. Taken together, our findings establish a key role for LRH-1 in the regulation of ERα target genes in breast cancer cells and identify a mechanism in which co-operative binding of LRH-1 and ERα at oestrogen response elements controls the expression of oestrogen-responsive genes

    APOBEC3B-Mediated Cytidine Deamination Is Required for Estrogen Receptor Action in Breast Cancer.

    Get PDF
    Estrogen receptor α (ERα) is the key transcriptional driver in a large proportion of breast cancers. We report that APOBEC3B (A3B) is required for regulation of gene expression by ER and acts by causing C-to-U deamination at ER binding regions. We show that these C-to-U changes lead to the generation of DNA strand breaks through activation of base excision repair (BER) and to repair by non-homologous end-joining (NHEJ) pathways. We provide evidence that transient cytidine deamination by A3B aids chromatin modification and remodelling at the regulatory regions of ER target genes that promotes their expression. A3B expression is associated with poor patient survival in ER+ breast cancer, reinforcing the physiological significance of A3B for ER action

    Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance.

    Get PDF
    Resistance to endocrine therapy remains a major clinical problem in breast cancer. Genetic studies highlight the potential role of estrogen receptor-α (ESR1) mutations, which show increased prevalence in the metastatic, endocrine-resistant setting. No naturally occurring ESR1 mutations have been reported in in vitro models of BC either before or after the acquisition of endocrine resistance making functional consequences difficult to study. We report the first discovery of naturally occurring ESR1 Y537C and ESR1 Y537S mutations in MCF7 and SUM44 ESR1-positive cell lines after acquisition of resistance to long-term-estrogen-deprivation (LTED) and subsequent resistance to fulvestrant (ICIR). Mutations were enriched with time, impacted on ESR1 binding to the genome and altered the ESR1 interactome. The results highlight the importance and functional consequence of these mutations and provide an important resource for studying endocrine resistance.Cancer Research U
    corecore