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ABSTRACT

Oestrogen receptor o (ERa) is a nuclear receptor that
is the driving transcription factor expressed in the
majority of breast cancers. Recent studies have
demonstrated that the liver receptor homolog-1
(LRH-1), another nuclear receptor, regulates breast
cancer cell proliferation and promotes motility and
invasion. To determine the mechanisms of LRH-1
action in breast cancer, we performed gene expres-
sion microarray analysis following RNA interference
for LRH-1. Interestingly, gene ontology (GO)
category enrichment analysis of LRH-1-regulated
genes identified oestrogen-responsive genes as the
most highly enriched GO categories. Remarkably,
chromatin immunoprecipitation coupled to massively
parallel sequencing (ChiP-seq) to identify genomic
targets of LRH-1 showed LRH-1 binding at many
ERa binding sites. Analysis of select binding sites con-
firmed regulation of ERa—regulated genes by LRH-1
through binding to oestrogen response elements, as
exemplified by the TFF1/pS2 gene. Finally, LRH-1
overexpression stimulated ERa recruitment, while
LRH-1 knockdown reduced ERa recruitment to ERa
binding sites. Taken together, our findings establish
a key role for LRH-1 in the regulation of ERa target
genes in breast cancer cells and identify a mechanism
in which co-operative binding of LRH-1 and ERa at
oestrogen response elements controls the expression
of oestrogen-responsive genes.

INTRODUCTION

Oestrogens play diverse roles in the body, most notably in
the development and maintenance of female and male
reproductive systems and secondary sexual characteristics
(1). Oestrogens are also implicated in the physiology of the
brain, bone and the cardiovascular system, as evidenced by
the increased risk of cardiovascular disease and osteopor-
osis following the decline in oestrogen levels during meno-
pause (1-3). Oestrogens also play a central role in
promoting breast cancer growth (4), as well as being
implicated in uterine and ovarian cancers (5,6). Two
closely related members of the nuclear receptor (NR)
superfamily of transcription factors, oestrogen receptor o
(ERa) and B (ERB) mediate oestrogen actions (7,8). The
majority (70-80%) of breast cancers express ERa, and this
transcription factor is believed to drive cancer cell prolif-
eration. Therefore, ERa activity is inhibited in breast
cancer patients with endocrine therapies using anti-oestro-
gens, such as tamoxifen and fulvestrant or by inhibiting
oestrogen biosynthesis either by using aromatase inhibitors
in postmenopausal women or with lutenising hormone
releasing hormone (LHRH) agonists in premenopausal
women. These therapies are well-tolerated and have been
a major factor in the improvement in patient survival seen
in recent years. However, up to 50% of patients with ERa-
positive disease that would require endocrine therapies do
not respond, while many responders eventually relapse,
with few treatment options being available following the
development of resistance (4,9). Hence, a better under-
standing of the mechanisms of ERa action would aid
patient stratification and identify new therapeutic targets.
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Ligand binding to ERo promotes recruitment to cis-
regulatory regions by direct binding to DNA at oestrogen
response elements (EREs) in target genes, or indirectly
through interaction with other transcription factors such
as APl and Spl (10,11) and consequent activation or
repression of gene expression. Chromatin immunopre-
cipitation (ChIP) studies have shown that oestrogen
addition initiates cycles of ERa association and dissoci-
ation from EREs, with concomitant cycles of transcrip-
tional co-regulator recruitment leading to chromatin
remodelling and histone modification and cyclical recruit-
ment of the RNA polymerase II (Polll) machinery and
subsequent transcription initiation (12—-15). These cycles
of co-regulator and Polll recruitment are accompanied
by cycles of reversal and re-establishment of many,
although not all, induced chromatin modifications.

While it is incontrovertible that ERa drives the growth
response in the majority of breast tumours, there is
mounting evidence that ERa does not act on its own
and that other transcription factors are essential for
ERa action in breast cancer. Gene expression profiling
and genomic approaches for genome-wide identification
of ERa binding regions, such as ChIP-chip and ChIP-
seq, have allowed the identification of direct ERa targets
in breast cancer cells (16-19) and in tumours (20). These
studies have also highlighted the importance of other tran-
scription factors in the ERa response, such as FoxA1 (also
known as HNF3a). FoxAl expression is associated with
ERa positivity in breast cancer and FoxAl is one of the
minimal set of genes that define ERa-positive luminal
cancer (21). FoxAl, which has been proposed to facilitate
binding of other transcription factors to DNA through its
action in promoting chromatin accessibility (22), is fre-
quently present at regions of ERa binding in the absence
of oestrogen and appears to be a key determinant of ERa
binding following oestrogen addition (16,23,24). GATA
proteins also act as ‘pioneer factors’, promoting transcrip-
tion factor recruitment (22), and GATA3 guides ERa
chromatin interactions and its expression is strongly
associated with ERa-positive luminal A breast cancer
subtype (25). Thus, FoxAl, GATA3, as well as the tran-
scription factors AP-2y, TLE1 and PBX1, act as pioneer
factors for ERa DNA binding by promoting chromatin
accessibility and long-range chromatin interactions
(26,27). Interestingly, some of these pioneer factors are
themselves ERa-regulated genes, indicating a feed-
forward mechanism that can act to reinforce oestrogenic
signals in breast cancer cells.

A role in ERa signalling for other NRs has recently
been highlighted by the finding that retinoic acid
receptor-o, an oestrogen-regulated gene in breast cancer
(28,29), localizes to ERa binding sites to modulate the
expression of oestrogen-regulated genes (30,31), providing
crosstalk between oestrogen and retinoid signalling in
breast cancer cells. Moreover, androgen receptor (AR)
expression is strongly associated with ERa positivity and
AR inhibits expression of oestrogen-responsive genes in
ERa-positive breast cancer cells (32). Indeed, a small
subset of breast tumours, termed the ‘molecular
apocrine’ subtype, which are ERa-negative but express
AR (33), typically express genes normally expressed in
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ERa-positive breast cancer (34). Recent expression micro-
array and AR ChIP-seq data generated for a cell line
characteristic of molecular apocrine breast cancer,
MDA-MB-453 (ERa-/PR-/AR+), showed that AR acti-
vates transcription of many typical ERa target genes
through AR recruitment to sites that are normally
bound by ERa in luminal MCF-7 cells (35). These
findings indicate another mode of crosstalk between
ERo and other NRs mediated by co-operative and/or
antagonistic interactions.

Liver receptor homolog-1 (LRH-1) (NRS5A2) is
expressed in developing and adult tissues of endodermal
origin, including liver, pancreas, intestine and the ovary
(36,37). Functionally, LRH-1 has been implicated in the
regulation of bile acid and cholesterol homeostasis (36,37)
and the regulation of inflammatory responses in the liver
and gut (38). LRH-1 is also important for steroid
hormone biosynthesis in the ovary (39), but also extra-
ovarian tissues, including preadipocytes, where LRH-1
regulates aromatase expression (40,41). LRH-1 is also
critical in development. Disruption of the LRH-1 gene
in mice is embryonic lethal at day E6.5-7.5 (42), and
LRH-1 regulates expression of the key pluripotency
factor Oct4 in the developing embryo epiblast (43).
Indeed, LRH-1 can replace Oct4 in the reprogramming
of mouse somatic cells to induced pluripotent stem cells
and induces expression of Nanog, a transcription factor
important for maintaining pluripotency in undifferenti-
ated embryonic stem cells (44,45).

LRH-1 has also been implicated in cancer. Mice hetero-
zygous for an adenomatosis polyposis coli (APC)
mutation and an LRH-1 inactivating mutation developed
fewer intestinal tumours than mice harbouring the APC
mutation only, and LRH-1 heterozygous mice developed
fewer azoxymethane-induced aberrant crypt foci (46).
LRH-1 expression is elevated in pancreatic cancer and
promotes pancreatic cancer cell growth through stimula-
tion of cyclin D1, cyclin E1 and c-Myc (47), while genome-
wide association studies implicate mutations in the LRH-1
gene in pancreatic ductal adenocarcinoma (48).
Aromatase is an LRH-1 target gene, which catalyses the
conversion of androgens (primarily androstenedione and
testosterone) to oestrogens. Aromatase expression and
activity is low in breast cancer cells; rather there is an
increase in aromatase expression/activity in tumour-
bearing breast stroma compared with normal breast
stroma, leading to the proposal that LRH-1 may aid
breast cancer progression in postmenopausal women by
promoting local oestrogen biosynthesis (40,41,49).

Although the real importance of local oestrogen pro-
duction for breast cancer remains unclear (50,51), recent
work demonstrates that LRH-1 is also expressed in breast
cancer cells where its expression is ERa-regulated (52,53).
In breast carcinoma, LRH-1 expression is associated with
ERa positivity (54). Functional studies have shown that
LRH-1 plays a direct role in regulating breast cancer cell
proliferation and promotes breast cancer cell motility and
invasion (52,53,55). Based on these findings, we have
identified LRH-1-regulated genes using gene expression
microarray profiling and ChIP-seq to map LRH-1
binding events in proliferating breast cancer cells.
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We show that LRH-1 is an important regulator of oestro-
gen-responsive gene expression that shares many binding
sites with ERa. Importantly, at shared sites, LRH-1
promotes ERa recruitment and vice versa, ERa stimulates
LRH-1 recruitment, thus providing evidence for a novel
mode of NR co-operativity in breast cancer cells.

MATERIALS AND METHODS
Cell culture

MCF-7 and COS-1 cells, obtained from American Type
Culture Collection (LGC Standards, UK), were routinely
cultured in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% foetal calf serum (FCS). For
oestrogen depletion experiments, the cells were transferred
to DMEM lacking phenol red and containing 5%
dextran-coated charcoal-stripped FCS (DSS) for 72h.
17B-estradiol (oestrogen) was added to a final concentra-
tion of 10 nM, and ICI182 780 (fulvestrant) was added to a
final concentration of 100nM. The synthetic LRH-I1
agonist, compound 5A was added to a final concentration
of 30 uM (53,56).

Plasmids

The Renilla luciferase reporter gene was RLTK (Promega,
UK). The LRH-1 expression plasmid pCI-LRH-1 and the
LRH-1 firefly luciferase reporter gene SF-1-luc were gifts
from Dr Donald McDonnell (57). HA-tagged LRH-I1
(pCI-HA3-LRH-1) was generated by insertion of 3xHA
coding sequence from pMXB-3HA-mNRS5A2 (44) into
pCI-LRH-1 to generate HA-tagged human LRH-I
variant 4 (53). The ERa expression plasmid has been
described previously (58). The pS2-luc and pS2-AERE-
luc reporter genes were kindly provided by Dr Vincent
Giguere (59). pS2-luc mutants were generated by site-
directed mutagenesis using the Quickchange kit from
Stratagene, UK.

Reporter gene assays

For transient transfection, COS-1 cells were seeded in
24-well plates in DMEM lacking phenol red and supple-
mented with 5% DSS. Following seeding for 24 h, cells
were transfected using FuGENE HD (Promega, UK),
with 100ng of luciferase reporter genes, 10ng of ERa
and 50ng of LRH-1. Oestrogen (10nM) or compound
S5A (30 uM) were added as indicated. Luciferase activities
were determined after a further 24 h, using the Dual-Glo
Luciferase Assay kit (Promega, UK). RLTK was trans-
fected to control for transfection efficiency, so firefly
luciferase activities were calculated relative to the Renilla
luciferase (RLTK) activities.

siRNA transfections

Cells were transfected with double-stranded RNA oligo-
nucleotides using the Lipofectamine RNAiMax reverse
transfection method (Invitrogen, UK), according to
manufacturer’s protocols. ON-TARGETplus
SMARTpool for LRH-1 (LU-003430, Thermofisher), or
individual siRNAs from the SMARTpool, were used as

indicated in figure legends. siLuc control (D-002050;
Thermofisher) or Control siRNA (1027251; Qiagen)
were transfected as negative controls. All siRNA experi-
ments used the double-stranded RINA oligonucleotides at
a final concentration of 80 nM.

Western blotting

Cells were cultured and whole-cell lysates were prepared
as described previously (60). Antibodies used for western
blotting are detailed in Supplementary Materials.

Quantitative reverse transcriptase-polymerase
chain reaction

Total RNA was collected and real-time reverse transcript-
ase-polymerase chain reaction (RT-PCR) was performed
as previously described (61). Real-time RT-PCR was
carried out using Tagman Gene Expression Assays
(Applied Biosystems, UK). Assay details can be found
in the Supplementary Materials.

Electrophoretic mobility shift assay

HA-LRH-1 and ERa proteins, made using the TNT
coupled transcription/translation system (Promega), were
used for electrophoretic mobility shift assay (EMSA), as
described previously (62), with the exception that the
oligonucleotides were labelled at the 5" end with DY782,
allowing detection of complexes using a LiCoR Odyssey
Infrared imaging system.

Chromatin Immunoprecipitations

ChIPs were performed as described previously (63). For
each ChIP, 10 ug of antibody (detailed in Supplementary
Information) and 100ul of Dynalbeads Protein A
(10002D; Invitrogen) were used. Primers for real-time
PCR are also provided in Supplementary Materials.

ChIPs and Solexa sequencing

ChIP DNA was amplified as described (63). Sequences
were generated by the Illumina Hiseq 2000 genome
analyser (using 50 bp reads), and aligned to the Human
Reference Genome (assembly hgl9, February 2009).
Enriched regions of the genome were identified by
comparing the ChIP samples with an input sample using
the MACS peak caller (64) version 1.3.7.1. All ChIP-seq
analyses were performed in duplicate, where only the
peaks shared by both replicates were considered. The
numbers of reads obtained, the percentage of reads
aligned and the number of peaks called are detailed in
Supplementary Figure S1.

Motif analysis, heatmaps and genomic distributions of
binding events

ChIP-seq data snapshots were generated using the
Integrative Genome Viewer IGV 2.2 (www.broad
institute.org/igv/) and the UCSC genome browser
(http://genome.ucsc.edu). Motif analyses were performed
through the Cistrome (cistrome.org), applying the SeqPos
motif tool (65). The genomic distributions of binding sites
were analysed using the cis-regulatory element annotation
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system (CEAS) (66). The genes closest to the binding site
on both strands were analysed. If the binding region is
within a gene, CEAS software indicates whether it is in
a 5 untranslated region (5" UTR), a 3’ untranslated region
(3 UTR), a coding exon or an intron. Promoter is defined
as 3 kb upstream from RefSeq 5 start. If a binding site is
>3 kb away from the RefSeq transcription start site, it is
considered distal intergenic. For integration with gene ex-
pression data, binding events were considered proximal
when identified in a gene body or within 20 kb upstream
of the transcription start site. Heatmaps were generated
using Seqminer, using default settings (67).

Gene expression microarray analysis

MCF-7 cells were transfected with LRH-1 siRNA #2, #3
or with a non-targeting siRNA (siControl; D-001210-10,
Thermofisher). RNA was extracted 72h later using the
QIAGEN RNeasy Kit (Qiagen Ltd., UK). Following
assessment of RNA integrity, four independent biological
replicates for each siRNA treatment were used for micro-
array analysis. The analysis was performed using
HumanHT-12 v 3.0 Expression BeadChiP (Illumina).
The BeadChiP image data were preprocessed using
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GenomeStudio (Illumina). The expression data were
then log, transformed and quantile-normalized using
Partek Genomics Suite. Gene ontology (GO) analyses
were performed using the database for annotation, visu-
alization and integrated discovery (DAVID) (http://david.
abcc.ncifcrf.gov) (68). The microarray data have been
deposited with the NCBI Gene Expression Omnibus
(GEO) (http://ncbi.nlm.nih.gov/geo/) under accession
number GSE47803. The ChIP-seq data are available
under accession number GSE49390.

RESULTS

LRH-1 regulates the expression of oestrogen-responsive
genes in breast cancer cells

Recent studies have shown that LRH-1 regulates breast
cancer cell proliferation and motility (52,53,55). To
identify genes that mediate LRH-1 action in breast
cancer cells, global gene expression profiling was per-
formed following LRH-1 silencing using siRNAs. RNA
was prepared from MCF-7 cells transfected with two
independent LRH-1 siRNAs that gave >90% LRH-1
knockdown (Figure 1A and B). Hierarchical cluster
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Figure 1. Expression profiling shows that LRH-1 regulates the expression of oestrogen-regulated genes. (A) Western blot analysis of MCF-7 cell
extracts prepared following transfection with control siRNA or four independent siRNAs for LRH-1. (B) Quantitative RT-PCR analysis was
performed using three independent RNA preparations made from siControl- or siLRH-1-transfected MCF-7 cells. Error bars represent standard
errors of the mean (SEM). (C) Gene expression profiling was carried out using four independent replicates of MCF-7 cells transfected with siControl,
siLRH-1 #2 or siLRH-1 #3. Shown are significant differentially expressed genes at P <0.01 corrected for false discovery rate (FDR), together with a
fold change >1.5 and <—1.5. (D) GO category enrichments of the genes differentially regulated by siLRH-1 are shown.
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analysis identified 222 genes the expression of which was
significantly altered (P < 0.01, fold change >1.5) with both
siRNAs, when compared with the control siRNA
(siControl) (Figure 1C). GO analysis showed that the
most highly enriched GO terms for these genes were
‘response to oestrogen stimulus’ and ‘response to
hormone stimulus’ (Figure 1D), implicating LRH-1 in
the regulation of oestrogen-regulated genes in breast
cancer cells.

To determine if LRH-1 directly regulates the expression
of oestrogen-responsive genes, ChIP-seq in MCF-7 cells
was carried out using antibodies for LRH-1. However,
none of the antibodies commercially available provided
sufficient enrichment for peak calling to identify LRH-1
binding regions (data not shown). A recent study utilized
ectopic expression of epitope-tagged LRH-1 to identify
LRH-1-regulated genes in mouse embryonic stem cells
(44). Using a similar strategy, we performed ChIP-seq
following transfection of MCF-7 cells with HA-tagged
LRH-1 (as exemplified in Figure 2A). Aligned reads
were acquired and following stringent cut-offs using two
independent replicates, peak calling identified 4876 LRH-
1 binding sites, of which 1723 (35%) were shared with
ERa (Figure 2B). The shared and unique binding
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patterns were not dictated by different thresholds in
peak calling algorithms, as shown by heatmap analyses
(Figure 2C and Supplementary Figure S1). Previous pub-
lications have demonstrated that the vast majority of ERa.
binding events map to enhancers and introns, with few
sites mapping to promoter proximal regions. The
majority of LRH-1 and ERa binding events, both
unique and shared, were similarly located within introns
and regions distal to gene promoters (Figure 2D).

The majority of NRs bind as dimers to sequence
motifs arranged as two copies of a hexameric motif,
5-AGGYCR-3', organized as direct or inverted repeats,
as exemplified by ERa and the ERE (7). A C-terminal
extension to the canonical zinc binding motifs in NR
DNA binding domains mediates binding of several NRs
to DNA response elements 3 bp longer than the standard
hexameric sequences. SF1 and LRH-1 bind as monomers
to a sequence having the consensus 5-YCAAGGYCR-3,
where YCA is the 5 extension to the AGGYCR sequence
to which most NR bind (36,69). Analysis of the LRH-1
binding sites for enriched DNA sequences identified a
motif similar to this consensus LRH-1 binding element,
with the sequence 5-SYCARGGYCA-3’ (Figure 2E and
Supplementary Figure S2). A motif consistent with the
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Figure 2. LRH-1 associates with ERa binding regions in chromatin. (A) ChIP-seq was carried out using HA and ERa antibodies for HA-LRH-1-
transfected MCF-7 cells. Genome browser snapshot of ChIP-seq samples for ERa and HA-LRH-1 on proliferating cells. Y bar shows tag count.
(B) Venn diagram of LRH-1 and ERa binding events. (C) Shown is a heatmap, with a window of 5kb around the binding sites, depicting all shared
and unique binding events for LRH-1 and ERa vertically aligned. Additionally, the binding events of the FOXA1 (24) and GATA3 (25) ChIP-
sequencing data sets are shown. (D) The genomic distribution of shared and unique binding events. (E) De novo motif analysis of the shared and

unique ERa and LRH-1 binding events.
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ERE consensus site was the top hit in the ERa unique
sites, while the shared LRH-1/ERa sites were enriched in
the LRH-1 motif. Motif analyses using a candidate
scanning approach identified NR binding motifs, with
the top hits for the LRH-1 unique sites being the SF1
and LRH-1 binding motifs. For the shared events, SF1/
LRH-1 and ESRI sites were enriched, while the ESR1 site
was the top hit for the ERa unique sites. This analysis also
highlighted enrichment for TFAP2C (AP2y), FOXAI,
GATAS3 and AP-1 (Fos, Jun) sites in the analysis of the
ERa unique sites (Supplementary Figure S3). This enrich-
ment is consistent with previous global binding site studies
for ERa (26,70). TFAP2C and FOS/JUN sites were also
enriched in the LRH-1 unique and LRH-1/ERa shared
sites (Supplementary Figures S4 and SS5). Interestingly,
FOXA1 and GATA3, being essential components of the
ERa transcription complex and its activity (24,25), were
found present at the LRH-1/ERa shared and ERa unique
sites. Both FOXA1 and GATA3 were absent from the
regions only bound by LRH-1, suggesting that these
factors may not be important for LRH-1 binding, at
least in the case of the LRH-1 unique sites.

LRH-1 binds to EREs in regulatory regions of a subset of
oestrogen-regulated genes

To explore the potential link between LRH-1 and ERa in
regulation of common target genes, we focused on the
archetypal ERa target gene, pS2, for mechanistic investi-
gations (Supplementary Figure S6A). LRH-1 recruitment
to the ERa binding region was confirmed by ChIP
(Figure 3A). EMSA demonstrated LRH-1 binding to the
pS2 ERE and confirmed the expected sequence require-
ments for LRH-1 binding (Figure 3B, C and E).
Mutation within the 5-AGGTCA motif prevented
LRH-1 and ERa binding, whereas mutation in the
3’ motif prevented ERa binding, but did not influence
LRH-1 binding. Similar results were obtained for the
ERE motif within the shared LRH-1 and ERa binding
region in the NRIP1 gene, another well-studied ERa-
regulated gene (Figure 3D and Supplementary Figure
S6A). The importance of the 5 sequences for LRH-1
binding was shown by mutation of the chicken vitello-
genin gene ERE to introduce the 5" extension. These mu-
tations allowed LRH-1 binding to the vitellogenin ERE.

LRH-1 stimulated a reporter gene encoding 1006 bp of
the pS2 gene promoter, containing the ERE (59). This
ERE sequence is required for activation of pS2 expression
by LRH-1 because deletion of the ERE sequence
(pS2AERE-luc) largely abrogated reporter gene activation
by LRH-1 (Figure 3F and Supplementary Figure S6B).
Substitutions in the 5 extension, the 5 hexameric
sequence, but not in the 3’ hexameric motif, prevented
LRH-1 activation of the pS2 reporter gene (Figure 3G).
Together, these findings demonstrate that LRH-1 can
bind to the pS2 gene promoter proximal ERE, to stimu-
late pS2 gene expression.

LRH-1 knockdown in MCF-7 cells resulted in a reduc-
tion in pS2 and NRIP1 expression for two independent
siRNAs (Figures 1B and 3I). The expression of AGR3,
PDZK1 and RET, genes to which LRH-1 is recruited at
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ERa binding regions (Supplementary Figure S7), was
similarly reduced on LRH-1 knockdown (Supplementary
Figure S8). Together, these results show that LRH-1 can
be recruited to ERa binding regions, and that binding to
select EREs allows LRH-1 regulation of ERa target genes.

Synergistic recruitment between LRH-1 and ERa to
EREs at ERa binding regions

As shown above, LRH-1 knockdown gave a marked
reduction in expression of pS2, NRIP1 and other genes
for which LRH-1 binding to ERa binding regions was
observed by ChIP-seq, demonstrating that LRH-1, like
ERa, promotes expression of these genes. This raises the
possibility that ERa and LRH-1 co-operatively regulate
expression of ERa target genes. Indeed, ectopic expression
of LRH-1 in MCF-7 cells stimulated ERa recruitment to
the pS2 promoter (Figure 4A). Conversely, siLRH-1 treat-
ment reduced ERo recruitment to the pS2 promoter
(Figure 4B). To extend this finding, ChIP-seq for ERa fol-
lowing siLRH-1 treatment was carried out to determine the
importance of LRH-1 for ERa binding to ERa binding
sites. LRH-1 knockdown resulted in a reduction by
~50% in the intensity of ERa binding events (Figure 4C
and Supplementary Figure S9A). The reduction in ERa
binding exemplified for pS2 (TFF1), PDZK1, RET and
AGR3 (Figure 4D) was confirmed by ChIP-QPCR
(Supplementary Figure SOB-E). Moreover, ectopic expres-
sion of LRH-1 stimulated ERa binding at these regions
(Figure 4A and E; Supplementary Figure S10). The
ELOVL2 gene serves as an example of an ERa binding
site to which LRH-1 is not recruited (Supplementary
Figure S10). In this case, LRH-1 silencing did not influence
ERa recruitment (Supplementary Figure S9F).

To determine if LRH-1 functions to promote or
maintain cofactor recruitment, we performed ChIP for
p300 and CREB Binding Protein (CBP), well-known
ERa co-activators (12) following LRH-1 silencing. There
was a significant decrease in p300 and CBP binding at all
loci (Figure 5A and B). Binding of the AIBI co-activator
was also decreased in the absence of LRH-1 (Figure 5C).
These data illustrate that the LRH-1 and ERa shared sites
are also occupied by typical ERa co-activators. Mining
publically available data sets for SRCI, SRC2, SRC3
(AIB1), p300 and CBP (71) illustrated that this was
indeed the case, and cofactor recruitment was found
enriched at LRH-1/ERa sites on a genome-wide level.
There was, however, no appreciable difference in p300
binding. This suggests that co-operativity between LRH-
1 and ERa promotes co-activator recruitment at co-
regulated genes. The changes in cofactor binding were re-
flected in changes in chromatin structure following LRH-1
silencing, as demonstrated by reduction in levels of histone
marks associated with gene expression, namely acetylation
of histone H3 (Figure SE-G). Also reduced on LRH-1
silencing were levels of H3 lysine 4 trimethylation
(H3K4Me3), a marker of transcriptional activity (72) at
the pS2 promoter (Figure 5F), as well as PollI recruitment
(Figure SH). These findings, together with the reduction in
mRNA levels of these genes (Supplementary Figure S8),
are further indicative of a requirement for LRH-1 for the
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Figure 3. LRH-1 regulates pS2 gene expression through binding to the pS2 ERE. (A) ChIP was carried out using IgG (control) or HA antibodies,
following transfection of MCF-7 cells with empty vector or HA-LRH-1, followed by real-time PCR using primers for the pS2 ERE region, or with
primers amplifying a region upstream of the pS2 ERE (control), as described (14). For each PCR, enrichment is shown relative to the vector control,
as mean values for three replicates; error bars represent SEM. Western blotting of HA-LRH-I1-transfected MCF-7 cell extracts is also shown.
(B) Sequences for consensus ERo and LRH-1 binding sites are shown above the sequence of the pS2 ERE. The NRIPI intronic ERE, chicken
vitellogenin ERE and the LRH-1 binding sites in the mouse AFP gene. Mutations generated in these sequences are shown in lower case and are
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Figure 4. LRH-1 promotes ERa binding to the ERa binding sites. (A) ERa ChIP was carried out using chromatin prepared for the ChIP shown in
Figure 3A. Enrichment is shown relative to the IgG control as mean values for three replicates. (B) ERo. ChIP was performed following MCF-7
treatment with siControl (NC) or siLRH-1 (n = 3). Western blotting for LRH-1 and ERa is also shown. (C) Average signal intensity of ERa binding
events is shown for MCF-7 cells treated with siControl or siLRH-1. (D) Genome browser snapshots of ChIP-seq samples for ERa from siControl- or
siLRH-1-treated MCF-7 cells are shown. Y bar shows tag count. (E) ERo ChIP for ERa binding regions is shown for vector (clear bars) and LRH-
I-transfected (grey bars) MCF-7 cells (n = 3, error bars = SEM).

LRH-1 regulates ERa recruitment. There was no reduc-
tion in FOXA1l or GATA3 protein levels on LRH-I
knockdown (Figure 5K).

The above results demonstrate a requirement for
LRH-1 for the transcription of oestrogen-responsive
genes in breast cancer cells. However, treatment of
MCF-7 cells with oestrogen stimulated LRH-1 binding to
these sites (Figure 6A—C and Supplementary Figure S11).
Moreover, treatment of MCF-7 cells with ICI182 780, an
anti-oestrogen that results in ERa degradation, reduced
LRH-1 binding (Figure 6D-F and Supplementary
Figure S12). Note that levels of ectopically expressed
LRH-1 are unaffected by oestrogen or ICI182780

transcription of these oestrogen-responsive genes. Note
that there was no change in levels of these proteins with
LRH-1 knockdown (Figure 5K).

Interestingly, LRH-1 knockdown did not affect FOXA1
binding to ERa binding regions (Figure 5I). This may be a
reflection of the described presence of FOXA1 before ERa
recruitment and its requirement for ERa recruitment to
chromatin (16,23,24). The importance of FOXA1 has also
been demonstrated for other NRs, e.g. AR (35), and it
might also be required for LRH-1 recruitment. However,
binding of GATAZ3, which is also critical for ERa recruit-
ment, was significantly reduced following LRH-1 silencing
(Figure 5J), identifying another mechanism by which

Figure 3. Continued

underlined. (C-E) EMSA was carried out using oligonucleotides having the sequences shown in (B). LRH-1 and ERo were produced using
coupled in vitro transcription/translation (IVTT). Western blotting of IVTT products for LRH-1 and ERa is shown in (E). (F) COS-1 cells were
transfected with pS2-luc, together with ERa and LRH-1, as shown. Reporter gene activities were corrected for transfection efficiency by normalizing
to Renilla luciferase activity and are shown relative to reporter gene activity for the vehicle-treated vector control. Shown are the mean pS2-luc
activities from three independent transfections; errors bars = SEM. (G and H) COS-1 cells were transfected with LRH-1 (G) or ERa (H), together
with pS2-luc or mutant reporters, as shown. Following normalization for the transfection control (renilla), activities are shown relative to the
activities obtained for pS2-luc.
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Figure 5. LRH-1 is required for co-activator loading and histone modification

. MCF-7 cells were transfected with LRH-1 siRNA. ChIP was

performed using antibodies for ERa cofactors (A—C, I and J), histone H3 acetylation and methylation marks (E-G) or Polll (H), followed by
real-time PCR of the pS2 ERE, as shown. Enrichment is shown relative to the IgG control (n = 3). The acetylated and methylated H3 ChIP was first
normalized to total H3, then to the IgG control. Errors bars = SEM, *P <0.05. (D) Heatmap of ERa co-activator binding [data from (71)], showing
the percentage of overlapping SRC1, SRC2, SRC3, CBP and p300 binding events at LRH-1 and ERa unique and shared sites. (K) Western blotting

of the lysates in parts (A-C, E-J), is shown.

treatment. Together, these results demonstrate that as
LRH-1 stimulates ERa binding, ERa reciprocally
promotes LRH-1 recruitment.

DISCUSSION

LRH-1 is a NR transcription factor that plays important
roles in development, reproduction and metabolism. Its
role in reverse cholesterol transport and bile acid homeo-
stasis has been especially well studied, and it has been
shown that LRH-1 acts as a potentiation factor for the
LXR oxysterol receptors through binding to sites
proximal to LXR binding sites to induce expression of
key genes involved in these processes, including
CYP7A1, CYP8BI1, CETP, SREB-1c and FAS (36,73-
77). The bile acid receptor FXR is also implicated in cross-
talk with LRH-1 and ChIP-seq for FXR and LRH-I
reveals that almost a quarter of hepatic LRH-1 binding
sites are located in close proximity to FXR binding sites,

suggesting that co-operativity between LRH-1 and FXR is
important for the regulation of metabolic genes in the liver
(78,79).

LRH-1 is a direct ERa target gene (52,53), its expres-
sion correlates with ERa in breast tumours (54) and it
promotes breast cancer proliferation and invasion (55).
We now show that LRH-1 is an important regulator
of ERa target genes because LRH-1 siRNA resulted
in reduced expression of oestrogen-responsive genes.
Moreover, LRH-1 ChIP-seq analysis shows that a sub-
stantial proportion of LRH-1 binding sites map to ERa
binding sites, with enrichment of the LRH-1 binding motif
being evident at these sites. This indicates that LRH-1
functions in breast cancer cells not only by mediating oes-
trogen action at non-ERa target genes following stimula-
tion of its expression by ERa (which may be viewed as a
classic mechanism by which a signal transduction pathway
response may be amplified) but also by potentiating ERa
action at many genes that are direct targets of ERa. The
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Figure 6. Modulation of ERa activity regulates LRH-1 recruitment to ERa binding regions. MCF-7 cells transfected with HA-LRH-1 were treated
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lysates is shown.

co-operativity between LRH-1 and ERa was further
illustrated by the substantial overlap in binding sites
between the ERa unique binding sites and ERo/LRH-1
shared sites with FOXA1 and GATA3, both well-estab-
lished parts of the ERa transcription complex.

Of particular note was our observation of overlapping
LRH-1 and ERa binding sites, to which binding of both
factors was confirmed. This is in contrast to the metabolic
genes regulated by LRH-1/LXR and LRH-1/FXR, where
binding at proximal but non-overlapping sites has been
described (73-79). Analysis of one of these overlapping
binding sites, at the pS2 promoter ERE shows that
LRH-1 binds to the 5 hexamer of this ERE, the
sequence around this hexamer being consistent with the
extended sequence to which LRH-1 binds. This finding is
consistent with a previous report that showed LRH-I1
binding to the pS2 and GREBI EREs (80). We further
show here that LRH-1 stimulated pS2 expression and
LRH-1 knockdown showed that it is required for pS2 ex-
pression. Interestingly, LRH-1 overexpression promoted
ERa recruitment, while LRH-1 knockdown by siRNA
inhibited ERa binding to the pS2 ERE, indicative of a
requirement of LRH-1 for ERa binding. Similar promo-
tion of ERa recruitment by LRH-1 was observed for the
NRIP1 intronic ERE, as well as ERa binding regions
associated with other oestrogen-responsive genes. ERa

ChIP-seq following LRH-1 silencing also demonstrated
a reduction in ERa binding, consistent with an important
role for LRH-1 in promoting ERa binding. Further inves-
tigation of the LRH-1 ChIP-seq data also showed detect-
able LRH-1 signal at additional ERa binding sites,
excluded by the peak call algorithm, due to threshold
stringency (Supplementary Figure S13). This suggests
that LRH-1 is recruited, albeit weakly, to a considerable
proportion of ERa binding sites, further highlighting the
importance of LRH-1 for ERa action in breast cancer
cells.

Our data are indicative of co-occupancy of the two re-
ceptors at a proportion of ERa binding sites. However, we
failed to reChIP ERa following ChIP for LRH-1, or vice
versa. Nor were we able to obtain evidence for co-binding
of ERa and LRH-1 in EMSA, using the pS2 ERE oligo-
nucleotides. Immunoprecipitation of ERo did not co-
immunoprecipitate LRH-1 in MCF-7 cells, nor did we
detect an interaction in co-immunoprecipitation experi-
ments in COS-1 cells following LRH-1 and ERa overex-
pression (data not shown). Together, these results indicate
that the co-operativity between LRH-1 and ERa does not
involve co-occupancy of binding sites by these receptors.
This raises the possibility that these receptors bind the pS2
ERE through a sequential recruitment mode of action, so-
called ‘assisted loading’, recently described for binding of
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the glucocorticoid receptor (GR) and a mutant oestrogen
receptor that can bind to a GR response element (81). This
study demonstrated that binding of one NR does not
reduce steady state binding of another NR; rather
binding of one NR can facilitate subsequent binding of
a second NR by promoting chromatin accessibility,
leading to steady state levels of several NRs at the same
response element. In agreement with this possibility,
LRH-1 silencing reduced levels of GATA3 and co-activa-
tor recruitment, histone modifications associated with
active chromatin as well as Polll binding. These results
suggest that LRH-1 promotes cofactor recruitment and
chromatin changes that facilitate ERo recruitment.
Additionally, ChIP following the addition of oestrogen
promoted LRH-1 recruitment, while ERa downregulation
with ICI182 780 treatment inhibited LRH-1 binding, sug-
gestive of a mechanism involving cyclical binding of ERa
and LRH-1 to the regulatory regions of oestrogen-respon-
sive genes. These findings show that ERa and LRH-1
co-regulate many oestrogen target genes and highlight
LRH-1 as an important mediator of the oestrogen
response in breast cancer cells.

The importance of LRH-1 for the expression of
oestrogen-responsive genes described here identifies it as
a putative drug target in breast cancer. Given that AR has
been shown to regulate the expression of ERa target genes
in ERa-negative breast cancer (35), it will be interesting to
determine the potential importance of LRH-1 in the regu-
lation of ERa target genes in endocrine resistant breast
cancer and/or in ERa-negative breast cancer and conse-
quently its therapeutic potential in breast cancer subtypes
currently lacking targeted therapies.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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