47 research outputs found
Pathways of bond topology transitions at the interface of silicon nanocrystals and amorphous silica matrix
The interface chemistry of silicon nanocrystals (NCs) embedded in amorphous
oxide matrix is studied through molecular dynamics simulations with the
chemical environment described by the reactive force field model. Our results
indicate that the Si NC-oxide interface is more involved than the previously
proposed schemes which were based on solely simple bridge or double bonds. We
identify different types of three-coordinated oxygen complexes, previously not
noted. The abundance and the charge distribution of each oxygen complex is
determined as a function of the NC size as well as the transitions among them.
The oxidation at the surface of NC induces tensile strain to Si-Si bonds which
become significant only around the interface, while the inner core remains
unstrained. Unlike many earlier reports on the interface structure, we do not
observe any double bonds. Furthermore, our simulations and analysis reveal that
the interface bond topology evolves among different oxygen bridges through
these three-coordinated oxygen complexes.Comment: 5 pages 6 figures 1 tabl
Atomistic structure simulation of silicon nanocrystals driven with suboxide penalty energies
The structural control of silicon nanocrystals embedded in amorphous oxide is currently an important technological problem. In this work, an approach is presented to simulate the structural behavior of silicon nanocrystals embedded in amorphous oxide matrix based on simple valence force fields as described by Keating-type potentials. After generating an amorphous silicon-rich-oxide, its evolution towards an embedded nanocrystal is driven by the oxygen diffusion process implemented in the form of a Metropolis algorithm based on the suboxide penalty energies. However, it is observed that such an approach cannot satisfactorily reproduce the shape of annealed nanocrystals. As a remedy, the asphericity and surface-to-volume minimization constraints are imposed. With the aid of such a multilevel approach, realistic-sized silicon nanocrystals can be simulated. Prediction for the nanocrystal size at a chosen oxygen molar fraction matches reasonably well with the experimental data when the interface region is also accounted. The necessity for additional shape constraints suggests the use of more involved force fields including long-range forces as well as accommodating different chemical environments such as the double bonds. Copyright © 2008 American Scientific Publishers All rights reserved
Dielectric Properties of the Quasi-Two-Dimensional Electron Liquid in Heterojunctions
A quasi-two-dimensional (Q2D) electron liquid (EL) is formed at the interface
of a semiconductor heterojunction. For an accurate characterization of the Q2D
EL, many-body effects need to be taken into account beyond the random phase
approximation. In this theoretical work, the self-consistent static local-field
correction known as STLS is applied for the analysis of the Q2D EL. The
penetration of the charge distribution to the barrier-acting material is taken
into consideration through a variational approach. The Coulomb from factor that
describes the effective 2D interaction is rigorously treated. The longitudinal
dielectric function and the plasmon dispersion of the Q2D EL are presented for
a wide range of electron and ionized acceptor densities choosing GaAs/AlGaAs as
the physical system. Analytical expressions fitted to our results are also
supplied to enable a widespread use of these results.Comment: 39 pages (in LaTeX), including 8 PostScript figure
Ionization degree of the electron-hole plasma in semiconductor quantum wells
The degree of ionization of a nondegenerate two-dimensional electron-hole
plasma is calculated using the modified law of mass action, which takes into
account all bound and unbound states in a screened Coulomb potential.
Application of the variable phase method to this potential allows us to treat
scattering and bound states on the same footing. Inclusion of the scattering
states leads to a strong deviation from the standard law of mass action. A
qualitative difference between mid- and wide-gap semiconductors is
demonstrated. For wide-gap semiconductors at room temperature, when the bare
exciton binding energy is of the order of T, the equilibrium consists of an
almost equal mixture of correlated electron-hole pairs and uncorrelated free
carriers.Comment: 22 pages, 6 figure
Levinson's theorem and scattering phase shift contributions to the partition function of interacting gases in two dimensions
We consider scattering state contributions to the partition function of a
two-dimensional (2D) plasma in addition to the bound-state sum. A partition
function continuity requirement is used to provide a statistical mechanical
heuristic proof of Levinson's theorem in two dimensions. We show that a proper
account of scattering eliminates singularities in thermodynamic properties of
the nonideal 2D gas caused by the emergence of additional bound states as the
strength of an attractive potential is increased. The bound-state contribution
to the partition function of the 2D gas, with a weak short-range attraction
between its particles, is found to vanish logarithmically as the binding energy
decreases. A consistent treatment of bound and scattering states in a screened
Coulomb potential allowed us to calculate the quantum-mechanical second virial
coefficient of the dilute 2D electron-hole plasma and to establish the
difference between the nearly ideal electron-hole gas in GaAs and the strongly
correlated exciton/free-carrier plasma in wide-gap semiconductors such as ZnSe
or GaN.Comment: 10 pages, 3 figures; new version corrects some minor typo
Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4
An extensive theoretical study is performed for wide bandgap crystalline
oxides and nitrides, namely, SiO_{2}, GeO_{2}, Al_{2}O_{3}, Si_{3}N_{4}, and
Ge_{3}N_{4}. Their important polymorphs are considered which are for SiO_{2}:
-quartz, - and -cristobalite and stishovite, for
GeO_{2}: -quartz, and rutile, for Al_{2}O_{3}: -phase, for
Si_{3}N_{4} and Ge_{3}N_{4}: - and -phases. This work
constitutes a comprehensive account of both electronic structure and the
elastic properties of these important insulating oxides and nitrides obtained
with high accuracy based on density functional theory within the local density
approximation. Two different norm-conserving \textit{ab initio}
pseudopotentials have been tested which agree in all respects with the only
exception arising for the elastic properties of rutile GeO_{2}. The agreement
with experimental values, when available, are seen to be highly satisfactory.
The uniformity and the well convergence of this approach enables an unbiased
assessment of important physical parameters within each material and among
different insulating oxide and nitrides. The computed static electric
susceptibilities are observed to display a strong correlation with their mass
densities. There is a marked discrepancy between the considered oxides and
nitrides with the latter having sudden increase of density of states away from
the respective band edges. This is expected to give rise to excessive carrier
scattering which can practically preclude bulk impact ionization process in
Si_{3}N_{4} and Ge_{3}N_{4}.Comment: Published version, 10 pages, 8 figure
Competition and moral behavior: A meta-analysis of forty-five crowd-sourced experimental designs
Significance
Using experiments involves leeway in choosing one out of many possible experimental designs. This choice constitutes a source of uncertainty in estimating the underlying effect size which is not incorporated into common research practices. This study presents the results of a crowd-sourced project in which 45 independent teams implemented research designs to address the same research question: Does competition affect moral behavior? We find a small adverse effect of competition on moral behavior in a meta-analysis involving 18,123 experimental participants. Importantly, however, the variation in effect size estimates across the 45 designs is substantially larger than the variation expected due to sampling errors. This “design heterogeneity” highlights that the generalizability and informativeness of individual experimental designs are limited.
Abstract
Does competition affect moral behavior? This fundamental question has been debated among leading scholars for centuries, and more recently, it has been tested in experimental studies yielding a body of rather inconclusive empirical evidence. A potential source of ambivalent empirical results on the same hypothesis is design heterogeneity—variation in true effect sizes across various reasonable experimental research protocols. To provide further evidence on whether competition affects moral behavior and to examine whether the generalizability of a single experimental study is jeopardized by design heterogeneity, we invited independent research teams to contribute experimental designs to a crowd-sourced project. In a large-scale online data collection, 18,123 experimental participants were randomly allocated to 45 randomly selected experimental designs out of 95 submitted designs. We find a small adverse effect of competition on moral behavior in a meta-analysis of the pooled data. The crowd-sourced design of our study allows for a clean identification and estimation of the variation in effect sizes above and beyond what could be expected due to sampling variance. We find substantial design heterogeneity—estimated to be about 1.6 times as large as the average standard error of effect size estimates of the 45 research designs—indicating that the informativeness and generalizability of results based on a single experimental design are limited. Drawing strong conclusions about the underlying hypotheses in the presence of substantive design heterogeneity requires moving toward much larger data collections on various experimental designs testing the same hypothesis