22 research outputs found

    Insect phylogeny structures the bacterial communities in the microbiome of psyllids (Hemiptera: Psylloidea) in Aotearoa New Zealand.

    No full text
    The bacterial microbiome of psyllids has been studied for decades, with a strong focus on the primary and secondary endosymbionts capable of providing essential amino acids for the insects' diet and therefore playing a key role in the insects' ability to radiate on novel plant hosts. Here, we combine metabarcoding analysis of the bacterial communities hosted by psyllids with a multi-gene phylogenetic analysis of the insect hosts to determine what factors influence the bacterial diversity of the psyllids' microbiomes, especially in the context of the dispersal and evolutionary radiation of these insects in Aotearoa New Zealand. Using multi-gene phylogenetics with COI, 18S and EF-1α sequences from 102 psyllid species, we confirmed for the first time monophyly for all the six genera of native/endemic Aotearoa New Zealand psyllids, with indications that they derive from at least six dispersal events to the country. This also revealed that, after its ancestral arrival, the genus Powellia has radiated onto a larger and more diverse range of plants than either Psylla or Ctenarytaina, which is uncommon amongst monophyletic psyllids globally. DNA metabarcoding of the bacterial 16S gene here represents the largest dataset analysed to date from psyllids, including 246 individuals from 73 species. This provides novel evidence that bacterial diversity across psyllid species is strongly associated with psyllid phylogenetic structure, and to a lesser degree to their host plant association and geographic distribution. Furthermore, while the strongest co-phylogenetic signals were derived from the primary and secondary symbionts, a signal of phylosymbiosis was still retained among the remaining taxa of the bacterial microbiome, suggesting potential vertical transmission of bacterial lineages previously unknown to have symbiotic roles

    Thermoelectric Device Application to Spacecraft Thermal Control

    No full text

    Development of low dark current SiGe-detector arrays for visible-NIR imaging sensor

    No full text
    SiGe based Focal Plane Arrays offer a low cost alternative for developing visible- NIR focal plane arrays that will cover the spectral band from 0.4 to 1.6 microns. The attractive features of SiGe based IRFPA's will take advantage of Silicon based technology, that promises small feature size, low dark current and compatibility with the low power silicon CMOS circuits for signal processing. This paper discusses performance comparison for the SiGe based VIS-NIR Sensor with performance characteristics of InGaAs, InSb, and HgCdTe based IRFPA's. Various approaches including device designs are discussed for reducing the dark current in SiGe detector arrays; these include Superlattice, Quantum dot and Buried junction designs that have the potential of reducing the dark current by several orders of magnitude. The paper also discusses approaches to reduce the leakage current for small detector size and fabrication techniques. In addition several innovative approaches that have the potential of increasing the spectral response to 1.8 microns and beyond
    corecore