36 research outputs found

    Modular proteins from the Drosophila sallimus (sls) gene and their expression in muscles with different extensibility

    Get PDF
    The passive elasticity of the sarcomere in striated muscle is determined by large modular proteins, such as titin in vertebrates. In insects, the function of titin is divided between two shorter proteins, projectin and sallimus (Sls), which are the products of different genes. The Drosophila sallimus (sls) gene codes for a protein of 2 MDa. The N-terminal half of the protein is largely made up of immunoglobulin domains and unique sequence; the C-terminal half has two stretches of sequence similar to the elastic PEVK region of titin, and at the end of the molecule there is a region of tandem Ig and fibronectin domains. We have investigated splicing pathways of the sls gene and identified isoforms expressed in different muscle types, and at different stages of Drosophila development. The 5’ half of sls codes for zormin and kettin; both proteins contain Ig domains and can be expressed as separate isoforms, or as larger proteins linked to sequence downstream. There are multiple splicing pathways between the kettin region of sls and sequence coding for the two PEVK regions. All the resulting protein isoforms have sequence derived from the 3’ end of the sls gene. Splicing of exons varies at different stages of development. Kettin RNA is predominant in the embryo, and longer transcripts are expressed in larva, pupa and adult. Sls isoforms in the indirect flight muscle (IFM) are zormin, kettin and Sls(700), in which sequence derived from the end of the gene is spliced to kettin RNA. Zormin is in both M-line and Z-disc. Kettin and Sls(700) extend from the Z-disc to the ends of the thick filaments, though, Sls(700) is only in the myofibril core. These shorter isoforms would contribute to the high stiffness of IFM. Other muscles in the thorax and legs have longer Sls isoforms with varying amounts of PEVK sequence; all span the I-band to the ends of the thick filaments. In muscles with longer Ibands, the proportion of PEVK sequence would determine the extensibility of the sarcomere. Alternative Sls isoforms could regulate the stiffness of the many fibre types in Droso phila muscles

    Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin\u27s I-band: the cardiomyopathy-linked mutation T2580I

    Get PDF
    Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a main causative factor of heart failure. However, distinguishing between benign and disease-causing mSNPs is a substantial challenge. Here, we research the question of whether a single mSNP in a generic domain of titin can affect heart function as a whole and, if so, how. For this, we studied the mSNP T2850I, seemingly linked to arrhythmogenic right ventricular cardiomyopathy (ARVC). We used structural biology, computational simulations and transgenic muscle in vivo methods to track the effect of the mutation from the molecular to the organismal level. The data show that the T2850I exchange is compatible with the domain three-dimensional fold, but that it strongly destabilizes it. Further, it induces a change in the conformational dynamics of the titin chain that alters its reactivity, causing the formation of aberrant interactions in the sarcomere. Echocardiography of knock-in mice indicated a mild diastolic dysfunction arising from increased myocardial stiffness. In conclusion, our data provide evidence that single mSNPs in titin\u27s I-band can alter overall muscle behaviour. Our suggested mechanisms of disease are the development of non-native sarcomeric interactions and titin instability leading to a reduced I-band compliance. However, understanding the T2850I-induced ARVC pathology mechanistically remains a complex problem and will require a deeper understanding of the sarcomeric context of the titin region affected

    Through thick and thin:dual regulation of insect flight muscle and cardiac muscle compared

    No full text
    corecore