698 research outputs found

    Singular dynamics and pseudogap formation in the underscreened Kondo impurity and Kondo lattice models

    Full text link
    We study a generalization of the Kondo model in which the impurity spin is represented by Abrikosov fermions in a rotation group SU(P) larger than the SU(N) group associated to the spin of the conduction electrons, thereby forcing the single electronic bath to underscreen the localized moment. We demonstrate how to formulate a controlled large N limit preserving the property of underscreening, and which can be seen as a ``dual'' theory of the multichannel large N equations usually associated to overscreening. Due to the anomalous scattering on the uncompensated degrees of freedom, the Fermi liquid description of the electronic fluid is invalidated, with the logarithmic singularities known to occur in the S=1 SU(2) Kondo impurity model being replaced by continuous power laws at N=\infty. The present technique can be extended to tackle the related underscreened Kondo lattice model in the large N limit. We discover the occurence of an insulating pseudogap regime in place of the expected renormalized metallic phase of the fully screened case, preventing the establishement of coherence over the lattice. This work and the recent observation of a similar weakly insulating behavior on transport in CeCuAs_2 should give momentum for further studies of underscreened impurity models on the lattice.Comment: 9 pages, 3 figures. Several modifications in published version, including new title, further details on the interpretation of the formalism and possible experimental connection

    Spectral scaling and quantum critical behaviour in the pseudogap Anderson model

    Full text link
    The pseudogap Anderson impurity model provides a classic example of an essentially local quantum phase transition. Here we study its single-particle dynamics in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi liquid and local moment phases, via the local moment approach. Both phases are shown to be characterized by a low-energy scale that vanishes at the QCP; and the universal scaling spectra, on all energy scales, are obtained analytically. The spectrum precisely at the QCP is also obtained; its form showing clearly the non-Fermi liquid, interacting nature of the fixed point.Comment: 7 pages, 2 figure

    A spin-dependent local moment approach to the Anderson impurity model

    Full text link
    We present an extension of the local moment approach to the Anderson impurity model with spin-dependent hybridization. By employing the two-self-energy description, as originally proposed by Logan and co-workers, we applied the symmetry restoration condition for the case with spin-dependent hybridization. Self-consistent ground states were determined through variational minimization of the ground state energy. The results obtained with our spin-dependent local moment approach applied to a quantum dot system coupled to ferromagnetic leads are in good agreement with those obtained from previous work using numerical renormalization group calculations

    Single-particle dynamics of the Anderson model: a two-self-energy description within the numerical renormalization group approach

    Full text link
    Single-particle dynamics of the Anderson impurity model are studied using both the numerical renormalization group (NRG) method and the local moment approach (LMA). It is shown that a 'two-self-energy' description of dynamics inherent to the LMA, as well as a conventional 'single-self-energy' description, arise within NRG; each yielding correctly the same local single-particle spectrum. Explicit NRG results are obtained for the broken symmetry spectral constituents arising in a two-self-energy description, and the total spectrum. These are also compared to analytical results obtained from the LMA as implemented in practice. Very good agreement between the two is found, essentially on all relevant energy scales from the high-energy Hubbard satellites to the low-energy Kondo resonance.Comment: 12 pages, 6 figure

    Uncovering Values: Detecting Latent Moral Content from Natural Language with Explainable and Non-Trained Methods

    Get PDF
    Moral values as commonsense norms shape our everyday individual and community behavior. The possibility to extract moral attitude rapidly from natural language is an appealing perspective that would enable a deeper understanding of social interaction dynamics and the individual cognitive and behavioral dimension. In this work we focus on detecting moral content from natural language and we test our methods on a corpus of tweets previously labeled as containing moral values or violations, according to Moral Foundation Theory. We develop and compare two different approaches: (i) a frame-based symbolic value detector based on knowledge graphs and (ii) a zero-shot machine learning model fine-tuned on a task of Natural Language Inference (NLI) and a task of emotion detection. Our approaches achieve considerable performances without the need for prior training

    Lipid Metabolism During Bacterial Growth, Sporulation, and Germination: Differential Synthesis of Individual Branched and Normal-Chain Fatty Acids During Spore Germination and Outgrowth of \u3ci\u3eBacillus thuringiensis\u3c/i\u3e

    Get PDF
    The biosynthesis of individual branched- and normal-chain fatty acids during Bacillus thuringiensis spore germination and outgrowth was studied by comparing pulsed and continuous labeling of these fatty acids with [U- 14C ]acetate. The relative specific activity of each fatty acid varies with time as the cell progresses through outgrowth. However, fatty acid synthesis does occur in two distinct phases. Upon germination, acetate is incorporated only into the iso-isomers i-C13, i-C14, and i-C16; no normal or anteiso synthesis occurs. Subsequent to T30, the full complement of branched- and normal-chain homologues is formed and there is a dramatic enhancement in the overall rate of fatty acid synthesis. Significantly, this rate increase coincides with a marked shift from the synthesis of short-chain to long-chain fatty acids. These findings illustrate a dichotomy in synthesis that may result from initial fatty acid formation by preexisting spore fatty acid biosynthetic enzymes in the absence of de novo protein synthesis. Elucidation of the timing and kinetics of individual fatty acid formation provides a biochemical profile of activities directly related to membrane differentiation and cellular development

    Quantum Monte Carlo calculation of the finite temperature Mott-Hubbard transition

    Full text link
    We present clear numerical evidence for the coexistence of metallic and insulating dynamical mean field theory(DMFT) solutions in a half-filled single-band Hubbard model with bare semicircular density of states at finite temperatures. Quantum Monte Carlo(QMC) method is used to solve the DMFT equations. We discuss important technical aspects of the DMFT-QMC which need to be taken into account in order to obtain the reliable results near the coexistence region. Among them are the critical slowing down of the iterative solutions near phase boundaries, the convergence criteria for the DMFT iterations, the interpolation of the discretized Green's function and the reduction of QMC statistical and systematic errors. Comparison of our results with those of other numerical methods is presented in a phase diagram.Comment: 4 pages, 5 figure

    Magnetic properties of the Anderson model: a local moment approach

    Full text link
    We develop a local moment approach to static properties of the symmetric Anderson model in the presence of a magnetic field, focussing in particular on the strong coupling Kondo regime. The approach is innately simple and physically transparent; but is found to give good agreement, for essentially all field strengths, with exact results for the Wilson ratio, impurity magnetization, spin susceptibility and related properties.Comment: 7 pages, 3 postscript figues. Latex 2e using the epl.cls Europhysics Letters macro packag

    Probing gas and dust in the tidal tail of NGC 5221 with the type Ia supernova iPTF16abc

    Full text link
    Context. Type Ia supernovae (SNe Ia) can be used to address numerous questions in astrophysics and cosmology. Due to their well known spectral and photometric properties, SNe Ia are well suited to study gas and dust along the lines-of-sight to the explosions. For example, narrow Na I D and Ca II H&K absorption lines can be studied easily, because of the well-defined spectral continuum of SNe Ia around these features. Aims. We study the gas and dust along the line-of-sight to iPTF16abc, which occurred in an unusual location, in a tidal arm, 80 kpc from centre of the galaxy NGC 5221. Methods. Using a time-series of high-resolution spectra, we examine narrow Na I D and Ca II H&K absorption features for variations in time, which would be indicative for circumstellar (CS) matter. Furthermore, we take advantage of the well known photometric properties of SNe Ia to determine reddening due to dust along the line-of-sight. Results. From the lack of variations in Na I D and Ca II H&K, we determine that none of the detected absorption features originate from the CS medium of iPTF16abc. While the Na I D and Ca II H&K absorption is found to be optically thick, a negligible amount of reddening points to a small column of interstellar dust. Conclusions. We find that the gas along the line-of-sight to iPTF16abc is typical of what might be found in the interstellar medium (ISM) within a galaxy. It suggests that we are observing gas that has been tidally stripped during an interaction of NGC 5221 with one of its neighbouring galaxies in the past ∼109\sim10^9 years. In the future, the gas clouds could become the locations of star formation. On a longer time scale, the clouds might diffuse, enriching the circum-galactic medium (CGM) with metals. The gas profile along the line-of-sight should be useful for future studies of the dynamics of the galaxy group containing NGC 5221.Comment: 8 pages, 6 figure

    Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads

    Full text link
    We use the numerical renormalization group method (NRG) to investigate a single-impurity Anderson model with a coupling of the impurity to a superconducting host. Analysis of the energy flow shows, in contrast to previous belief, that NRG iterations can be performed up to a large number of sites, corresponding to energy differences far below the superconducting gap. This allows us to calculate the impurity spectral function very accurately for frequencies near the gap edge, and to resolve, in a certain parameter regime, sharp peaks in the spectral function close to the gap edge.Comment: 18 pages, 7 figures, accepted for publication in Journal of Physics: Condensed Matte
    • …
    corecore