6,431 research outputs found
Virtual image out-the-window display system study. Volume 2 - Appendix
Virtual image out-the-window display system imaging techniques and simulation devices - appendices containing background materia
Particle distributions in approximately 10(14) 10(16) eV air shower cores at sea level
Experimental evidence is reported for fixed distances (0, 1.0, 2.5 and 4.0 m) from the shower centers and for core flattening. The cores become flatter, on average, as the shower size (primary energy) increases. With improved statistics on 4192 cores, the previous results are exactly confirmed
The preservation of quartz grain surface textures following vehicle fire and their use in forensic enquiry
During a terrorist trial, dispute arose as to whether the temperature produced in a car fire was sufficient to destroy quartz grain surface textures. A series of seven sequential experiments showed that the temperature for quartz surface texture modification/destruction and the production of vugs, vesicles and glassy precipitation ('snowdrifting') occurred at 1200 degrees C under normal atmospheric conditions. By adding a number of man-made and natural substances, it was found that only the presence of salts depressed this modification temperature (to 900 degrees C). Experiments to determine the temperature of fire in a car indicated that the maximum temperature produced under natural conditions (810 degrees C) was insufficient to affect the quartz grain Surface textures. These results confirm the use of surface texture analysis of quartz grains recovered from the remains of cars Subjected to fire and their use as a forensic indicator. (C) 2008 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved
Progress report on a new search for free e/3 quarks in the cores of 10(15) - 10(16) eV air showers
The Leeds 3 sq m Wilson cloud chamber is being used in a new search for free e/3 quarks close to the axes of 10 to the 15th power - 10 to the 16th power eV air showers. A ratio trigger circuit is used to detect the incidence of air shower cores; the position of the shower center and the axis direction are determined from photographs of current-limited spark chambers. It is thus possible, for the first time, to know where we have looked for quarks in air showers and to select for scanning only those cloud chamber photographs where we have good evidence that the shower axis was close to the chamber. 250 g/sq cm of lead/concrete absorber above the cloud chamber serve to reduce particle densities and make a quark search possible very close to the shower axes. The current status of the search is given
Real-time standard scan plane detection and localisation in fetal ultrasound using fully convolutional neural networks
Fetal mid-pregnancy scans are typically carried out according to fixed protocols. Accurate detection of abnormalities and correct biometric measurements hinge on the correct acquisition of clearly defined standard scan planes. Locating these standard planes requires a high level of expertise. However, there is a worldwide shortage of expert sonographers. In this paper, we consider a fully automated system based on convolutional neural networks which can detect twelve standard scan planes as defined by the UK fetal abnormality screening programme. The network design allows real-time inference and can be naturally extended to provide an approximate localisation of the fetal anatomy in the image. Such a framework can be used to automate or assist with scan plane selection, or for the retrospective retrieval of scan planes from recorded videos. The method is evaluated on a large database of 1003 volunteer mid-pregnancy scans. We show that standard planes acquired in a clinical scenario are robustly detected with a precision and recall of 69 % and 80 %, which is superior to the current state-of-the-art. Furthermore, we show that it can retrospectively retrieve correct scan planes with an accuracy of 71 % for cardiac views and 81 % for non-cardiac views
Bearing restoration by grinding
A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed
Flight tests of IFR landing approach systems for helicopters
Joint NASA/FAA helicopter flight tests were conducted to investigate airborne radar approaches (ARA) and microwave landing system (MLS) approaches. Flight-test results were utilized to prove NASA with a data base to be used as a performance measure for advanced guidance and navigation concepts, and to provide FAA with data for establishment of TERPS criteria. The first flight-test investigation consisted of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico, using weather/mapping radar, operational pilots, and a Bell 212 helicopter. The second flight-test investigation consisted of IFR MLS approaches at Crows Landing (near Ames Research Center), with a Bell UH-1H helicopter, using NASA, FAA, and operational industry pilots. Tests are described and results discussed
Investigation of phonon behavior in Pr2NiMnO6 by micro-Raman spectroscopy
The temperature dependence of phonon excitations and the presence of spin
phonon coupling in polycrystalline Pr2NiMnO6 samples were studied using
micro-Raman spectroscopy and magnetometry. Magnetic properties show a single
ferromagnetic-to-paramagnetic transition at 228 K and a saturation
magnetization close to 4.95 \muB/f.u.. Three distinct Raman modes at 657, 642,
and 511 cm-1 are observed. The phonon excitations show a clear hardening due to
anharmonicity from 300 K down to 10 K. Further, temperature dependence of the
657 cm-1 mode shows only a small softening. This reflects the presence of a
relatively weak spin-phonon coupling in Pr2NiMnO6 contrary to other double
perovskites previously studied.Comment: 10 pages, 4 fig
Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system
A number of representation schemes have been presented for use within
learning classifier systems, ranging from binary encodings to neural networks.
This paper presents results from an investigation into using discrete and fuzzy
dynamical system representations within the XCSF learning classifier system. In
particular, asynchronous random Boolean networks are used to represent the
traditional condition-action production system rules in the discrete case and
asynchronous fuzzy logic networks in the continuous-valued case. It is shown
possible to use self-adaptive, open-ended evolution to design an ensemble of
such dynamical systems within XCSF to solve a number of well-known test
problems
The Voluntary Adjustment of Railroad Obligations
Automatic memory management techniques eliminate many programming errors that are both hard to find and to correct. However, these techniques are not yet used in embedded systems with hard realtime applications. The reason is that current methods for automatic memory management have a number of drawbacks. The two major ones are: (1) not being able to always guarantee short real-time deadlines and (2) using large amounts of extra memory. Memory is usually a scarce resource in embedded applications. In this paper we present a new technique, Real-Time Reference Counting (RTRC) that overcomes the current problems and makes automatic memory management attractive also for hard real-time applications. The main contribution of RTRC is that often all memory can be used to store live objects. This should be compared to a memory overhead of about 500% for garbage collectors based on copying techniques and about 50% for garbage collectors based on mark-and-sweep techniques
- …