51 research outputs found
The Future of Electricity Generation in New Zealand
Increasing demand for electricity in New Zealand requires approximately 150 megawatts of new capacity to be installed annually. Rapidly increasing global prices for fossil fuels; the New Zealand Energy Strategy with its focus on renewable technologies; climate change policies; and a gradual shift from an energy constrained electricity system to one with capacity constraints are all factors underlying a change in the type of generation plant being installed and the location of that plant. This paper examines the likely future of the generation sector over the next 20-30 years. It is based on the work undertaken by the Electricity Commission in preparing its Statement of Opportunities, which contains scenarios describing how electricity may be generated in the future. These scenarios are produced using the Commission’s generation expansion model.Electricity, capacity expansion, Environmental Economics and Policy, Resource /Energy Economics and Policy,
Direct Probe of Dark Energy Interactions with a Solar System Laboratory
In this NIAC (NASA Innovative Advanced Concepts) study, we embrace the challenge of direct detection of the galileon dark energy field in the Vainshtein model. We developed a mission concept to directly measure the galileon field using the solar system as a laboratory. The experiment scheme involves precise measurements of the trace of the total scalar force gradient tensor. A tetrahedral constellation off our spacecraft measures the "local" traces while orbiting about 1 AU (Astronomical Unit) away from the Sun and faraway from planets (Figure 1). The trace measurement is insensitive to the much stronger gravity field which satisfies the inverse square law and thus is traceless. Atomic test masses and atom interferometer measurement techniques are used as precise drag-free inertial references while laser ranging interferometers are employed to connect among atom interferometer pairs in spacecraft for the differential gradient force measurements. We conclude that such a mission is scientifically and technologically feasible. We show that a mission of 3-year measurement time would be able to provide high confidence statements (over 3 standard deviations) about the existence and strength of the cubic galileon field of the Sun. In addition, such a mission would also provide rich and diverse scientific data for testing any gravitational theory in general beyond the Newtonian gravity, hunting for ultra-light fields of dark matter, and detecting gravitational waves in the mid-frequency band between those of LIGO (Laser Interferometer Gravitational-Wave Observatory) and LISA (Laser Interferometer Space Antenna). For these reasons, we will term the mission concept Gravity Observation and Dark energy Detection Explorer in the Solar System (GODDESS)
Global public policy, transnational policy communities, and their networks
Public policy has been a prisoner of the word "state." Yet, the state is reconfigured by globalization. Through "global public–private partnerships" and "transnational executive networks," new forms of authority are emerging through global and regional policy processes that coexist alongside nation-state policy processes. Accordingly, this article asks what is "global public policy"? The first part of the article identifies new public spaces where global policies occur. These spaces are multiple in character and variety and will be collectively referred to as the "global agora." The second section adapts the conventional policy cycle heuristic by conceptually stretching it to the global and regional levels to reveal the higher degree of pluralization of actors and multiple-authority structures than is the case at national levels. The third section asks: who is involved in the delivery of global public policy? The focus is on transnational policy communities. The global agora is a public space of policymaking and administration, although it is one where authority is more diffuse, decision making is dispersed and sovereignty muddled. Trapped by methodological nationalism and an intellectual agoraphobia of globalization, public policy scholars have yet to examine fully global policy processes and new managerial modes of transnational public administration
Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey: Report of a Community Workshop Examining Extragalactic, Galactic, Stellar and Planetary Science
SPHEREx is a proposed SMEX mission selected for Phase A. SPHEREx will carry
out the first all-sky spectral survey and provide for every 6.2" pixel a
spectra between 0.75 and 4.18 m [with R41.4] and 4.18 and 5.00
m [with R135]. The SPHEREx team has proposed three specific science
investigations to be carried out with this unique data set: cosmic inflation,
interstellar and circumstellar ices, and the extra-galactic background light.
It is readily apparent, however, that many other questions in astrophysics and
planetary sciences could be addressed with the SPHEREx data. The SPHEREx team
convened a community workshop in February 2016, with the intent of enlisting
the aid of a larger group of scientists in defining these questions. This paper
summarizes the rich and varied menu of investigations that was laid out. It
includes studies of the composition of main belt and Trojan/Greek asteroids;
mapping the zodiacal light with unprecedented spatial and spectral resolution;
identifying and studying very low-metallicity stars; improving stellar
parameters in order to better characterize transiting exoplanets; studying
aliphatic and aromatic carbon-bearing molecules in the interstellar medium;
mapping star formation rates in nearby galaxies; determining the redshift of
clusters of galaxies; identifying high redshift quasars over the full sky; and
providing a NIR spectrum for most eROSITA X-ray sources. All of these
investigations, and others not listed here, can be carried out with the nominal
all-sky spectra to be produced by SPHEREx. In addition, the workshop defined
enhanced data products and user tools which would facilitate some of these
scientific studies. Finally, the workshop noted the high degrees of synergy
between SPHEREx and a number of other current or forthcoming programs,
including JWST, WFIRST, Euclid, GAIA, K2/Kepler, TESS, eROSITA and LSST.Comment: Report of the First SPHEREx Community Workshop,
http://spherex.caltech.edu/Workshop.html , 84 pages, 28 figure
Minimizing the impact of biologging devices: Using computational fluid dynamics for optimizing tag design and positioning
Biologging devices are used ubiquitously across vertebrate taxa in studies of movement and behavioural ecology to record data from organisms without the need for direct observation. Despite the dramatic increase in the sophistication of this technology, progress in reducing the impact of these devices to animals is less obvious, notwithstanding the implications for animal welfare. Existing guidelines focus on tag weight (e.g. the ‘5% rule'), ignoring aero/hydrodynamic forces in aerial and aquatic organisms, which can be considerable. Designing tags to minimize such impact for animals moving in fluid environments is not trivial, as the impact depends on the position of the tag on the animal, as well as its shape and dimensions.
We demonstrate the capabilities of computational fluid dynamics (CFD) modelling to optimize the design and positioning of biologgers on marine animals, using the grey seal (Halichoerus grypus) as a model species. Specifically, we investigate the effects of (a) tag form, (b) tag size, and (c) tag position and quantify the impact under frontal hydrodynamic forces, as encountered by seals swimming at sea.
By comparing a conventional versus a streamlined tag, we show that the former can induce up to 22% larger drag for a swimming seal; to match the drag of the streamlined tag, the conventional tag would have to be reduced in size by 50%. For the conventional tag, the drag induced can differ by up to 11% depending on the position along the seal's body, whereas for the streamlined tag this difference amounts to only 5%.
We conclude by showing how the CFD simulation approach can be used to optimize tag design to reduce drag for aerial and aquatic species, including issues such as the impact of lateral currents (unexplored until now). We also provide a step-by-step guide to facilitate the implementation of CFD in biologging tag design
Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning
Energy sector policies have focused historically on the planning, design and construction of energy infrastructures, while typically overlooking the processes required for the management of their end-of-life, and particularly their decommissioning. However, decommissioning of existing and future energy infrastructures is constrained by a plethora of technical, economic, social and environmental challenges that must be understood and addressed if such infrastructures are to make a net-positive contribution over their whole life. Here, we introduce the magnitude and variety of these challenges to raise awareness and stimulate debate on the development of reasonable policies for current and future decommissioning projects. Focusing on power plants, the paper provides the foundations for the interdisciplinary thinking required to deliver an integrated decommissioning policy that incorporates circular economy principles to maximise value throughout the lifecycle of energy infrastructures. We conclude by suggesting new research paths that will promote more sustainable management of energy infrastructures at the end of their life
Effects of model incompleteness on the drift-scan calibration of radio telescopes
Precision calibration poses challenges to experiments probing the redshifted 21-cm signal of neutral hydrogen from the Cosmic Dawn and Epoch of Reionization (z ~ 30-6). In both interferometric and global signal experiments, systematic calibration is the leading source of error. Though many aspects of calibration have been studied, the overlap between the two types of instruments has received less attention. We investigate the sky based calibration of total power measurements with a HERA dish and an EDGES-style antenna to understand the role of autocorrelations in the calibration of an interferometer and the role of sky in calibrating a total power instrument. Using simulations we study various scenarios such as time variable gain, incomplete sky calibration model, and primary beam model. We find that temporal gain drifts, sky model incompleteness, and beam inaccuracies cause biases in the receiver gain amplitude and the receiver temperature estimates. In some cases, these biases mix spectral structure between beam and sky resulting in spectrally variable gain errors. Applying the calibration method to the HERA and EDGES data, we find good agreement with calibration via the more standard methods. Although instrumental gains are consistent with beam and sky errors similar in scale to those simulated, the receiver temperatures show significant deviations from expected values. While we show that it is possible to partially mitigate biases due to model inaccuracies by incorporating a time-dependent gain model in calibration, the resulting errors on calibration products are larger and more correlated. Completely addressing these biases will require more accurate sky and primary beam models
Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission
AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p
Recommended from our members
Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study
Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
- …