1,499 research outputs found

    Momentum distribution dynamics of a Tonks-Girardeau gas: Bragg reflections of a quantum many-body wavepacket

    Get PDF
    The dynamics of the momentum distribution and the reduced single-particle density matrix (RSPDM) of a Tonks-Girardeau (TG) gas is studied in the context of Bragg-reflections of a many-body wavepacket. We find strong suppression of a Bragg-reflection peak for a dense TG wavepacket; our observation illustrates dependence of the momentum distribution on the interactions/wavefunction symmetry. The momentum distribution is calculated with a fast algorithm based on a formula expressing the RSPDM via a dynamically evolving single-particle basis

    Four-dimensional photonic lattices and discrete tesseract solitons

    Get PDF
    We theoretically study discrete photonic lattices in more than three dimensions and point out that such systems can exist in continuous three-dimensional (3D) space. We study discrete diffraction in the linear regime, and predict the existence of four-dimensional (4D) tesseract solitons in nonlinear 4D periodic photonic lattices. Finally, we propose a design towards a potential realization of such periodic 4D lattices in experiments.Comment: Submitted to PRL on 14 May 201

    Transverse electric plasmons in bilayer graphene

    Get PDF
    We predict the existence of transverse electric (TE) plasmons in bilayer graphene. We find that their plasmonic properties are much more pronounced in bilayer than in monolayer graphene, in a sense that they can get more localized at frequencies just below ω=0.4\hbar\omega=0.4~eV for adequate doping values. This is a consequence of the perfectly nested bands in bilayer graphene which are separated by 0.4\sim 0.4~eV

    Screening effect on the optical absorption in graphene and metallic monolayers

    Get PDF
    Screening is one of the fundamental concepts in solid state physics. It has a great impact on the electronic properties of graphene where huge mobilities were observed in spite of the large concentration of charged impurities. While static screening has successfully explained DC mobilities, screening properties can be significantly changed at infrared or optical frequencies. In this paper we discuss the influence of dynamical screening on the optical absorption of graphene and other 2D electron systems like metallic monolayers. This research is motivated by recent experimental results which pointed out that graphene plasmon linewidths and optical scattering rates can be much larger than scattering rates determined by DC mobilities. Specifically we discuss a process where a photon incident on a graphene plane can excite a plasmon by scattering from an impurity, or surface optical phonon of the substrate.Comment: 19 pages, 2 figure

    Ground state properties of a one-dimensional strongly-interacting Bose-Fermi mixture in a double-well potential

    Get PDF
    We calculate the reduced single-particle density matrix (RSPDM), momentum distributions, natural orbitals and their occupancies, for a strongly interacting one-dimensional Bose-Fermi mixture in a double-well potential with a large central barrier. For mesoscopic systems, we find that the ground state properties qualitatively differ for mixtures with even number of particles (both odd-odd and even-even mixtures) in comparison to mixtures with odd particle numbers (odd-even and even-odd mixtures). For even mixtures the momentum distribution is smooth, whereas the momentum distribution of odd mixtures possesses distinct modulations; the differences are observed also in the off-diagonal correlations of the RSPDM, and in the occupancies of natural orbitals. The calculation is based on a derived formula which enables efficient calculation of the RSPDM for mesoscopic mixtures in various potentials.Comment: 10 figure

    Free expansion of a Lieb-Liniger gas: Asymptotic form of the wave functions

    Get PDF
    The asymptotic form of the wave functions describing a freely expanding Lieb-Liniger gas is derived by using a Fermi-Bose transformation for time-dependent states, and the stationary phase approximation. We find that asymptotically the wave functions approach the Tonks-Girardeau (TG) structure as they vanish when any two of the particle coordinates coincide. We point out that the properties of these asymptotic states can significantly differ from the properties of a TG gas in a ground state of an external potential. The dependence of the asymptotic wave function on the initial state is discussed. The analysis encompasses a large class of initial conditions, including the ground states of a Lieb-Liniger gas in physically realistic external potentials. It is also demonstrated that the interaction energy asymptotically decays as a universal power law with time, Eintt3E_\mathrm{int}\propto t^{-3}.Comment: Section VI added to v2; published versio

    Lieb-Liniger gas in a constant force potential

    Get PDF
    We use Gaudin's Fermi-Bose mapping operator to calculate exact solutions for the Lieb-Liniger model in a linear (constant force) potential (the constructed exact stationary solutions are referred to as the Lieb-Liniger-Airy wave functions). The ground state properties of the gas in the wedge-like trapping potential are calculated in the strongly interacting regime by using Girardeau's Fermi-Bose mapping and the pseudopotential approach in the 1/c1/c-approximation (cc denotes the strength of the interaction). We point out that quantum dynamics of Lieb-Liniger wave packets in the linear potential can be calculated by employing an NN-dimensional Fourier transform as in the case of free expansion

    The pinning quantum phase transition in a Tonks Girardeau gas: diagnostics by ground state fidelity and the Loschmidt echo

    Get PDF
    We study the pinning quantum phase transition in a Tonks-Girardeau gas, both in equilibrium and out-of-equilibrium, using the ground state fidelity and the Loschmidt echo as diagnostic tools. The ground state fidelity (GSF) will have a dramatic decrease when the atomic density approaches the commensurate density of one particle per lattice well. This decrease is a signature of the pinning transition from the Tonks to the Mott insulating phase. We study the applicability of the fidelity for diagnosing the pinning transition in experimentally realistic scenarios. Our results are in excellent agreement with recent experimental work. In addition, we explore the out of equilibrium dynamics of the gas following a sudden quench with a lattice potential. We find all properties of the ground state fidelity are reflected in the Loschmidt echo dynamics i.e., in the non equilibrium dynamics of the Tonks-Girardeau gas initiated by a sudden quench of the lattice potential
    corecore