We calculate the reduced single-particle density matrix (RSPDM), momentum
distributions, natural orbitals and their occupancies, for a strongly
interacting one-dimensional Bose-Fermi mixture in a double-well potential with
a large central barrier. For mesoscopic systems, we find that the ground state
properties qualitatively differ for mixtures with even number of particles
(both odd-odd and even-even mixtures) in comparison to mixtures with odd
particle numbers (odd-even and even-odd mixtures). For even mixtures the
momentum distribution is smooth, whereas the momentum distribution of odd
mixtures possesses distinct modulations; the differences are observed also in
the off-diagonal correlations of the RSPDM, and in the occupancies of natural
orbitals. The calculation is based on a derived formula which enables efficient
calculation of the RSPDM for mesoscopic mixtures in various potentials.Comment: 10 figure