1,397 research outputs found

    Intraspecific plant-soil feedback and intraspecific overyielding in Arabidopsis thaliana

    Get PDF
    1\. Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant-soil feedback that can, for example, be caused by below-ground microorganisms, has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. 2\. Here we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above- and below-ground traits. We performed a plant-soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity-productivity relationship at intraspecific level. 3\. We found strong differences in above- and below-ground traits between the A. thaliana accessions. Overall, plant-soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: accession mixtures produced a higher total above-ground biomass than accession monocultures. 4\. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession-specific accumulated soil communities, root exudates or by accession-specific resource use based on genetic differences that are not expressed in morphological traits. 5\. Synthesis. Our results provide some of the first evidence for intraspecific plant-soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning.Ecology and Evolution, 4 (12), 2533-254

    EXTREME SENSITIVITY AND THE PRACTICAL IMPLICATIONS OF RISK ASSESSMENT THRESHOLDS

    Get PDF
    Traditional risk-assessment theory assumes the existence of a threshold for non-cancer health effects. However, a recent trend in environmental regulation rejects this assumption in favor of non-threshold linearity for these endpoints. This trend is driven largely by two related concepts: (1) a theoretical assumption of wide-ranging human sensitivity, and (2) inability to detect thresholds in epidemiologic models. Wide-ranging sensitivity assumes a subpopulation with extreme background vulnerability, so that even trivial environmental exposures are hazardous to someone somewhere. We use examples from the real world of clinical medicine to show that this theoretical assumption is inconsistent with the biology of mammalian systems and the realities of patient care. Using examples from particulate-matter air-pollution research, we further show that failure to reject linearity is usually driven by statistical rather than biological considerations, and that nonlinear/threshold models often have a similar or better fit than their linear counterparts. This evidence suggests the existence of practical, real-world thresholds for most chemical exposures

    Discussion required for correct interpretation

    Get PDF
    Thank you for the opportunity to comment on the editorial by Romero and colleagues [1], which raises a number of important and interesting questions. Such discussion is mandatory if results of scientific techniques such as gene array are to be correctly interpreted and used as the basis for future improvements in patient care

    Muon-spin rotation measurements of the penetration depth of the Mo_3Sb_7 superconductor

    Full text link
    Measurements of the magnetic field penetration depth \lambda in superconductor Mo_3Sb_7 (T_c~2.1 K) were carried out by means of muon-spin-rotation. The absolute values of \lambda, the Ginzburg-Landau parameter \kappa, the first H_{c1} and the second H_{c2} critical fields at T=0 are \lambda(0)=720(100)nm, \kappa(0)=55(9), \mu_0H_{c1}(0)=1.8(3)mT, and \mu_0H_{c2}(0)=1.9(2)T. The zero temperature value of the superconducting energy gap \Delta(0) was found to be 0.35(1)meV corresponding to the ratio 2\Delta(0)/k_BT_c=3.83(10). At low temperatures \lambda^{-2}(T) saturates and becomes constant below T~0.3T_c, in agreement with what is expected for s-wave BCS superconductors. Our results suggest that Mo_3Sb_7 is a BCS superconductor with the isotropic energy gapComment: 5 pages, 4 figure

    Probing the pairing symmetry in the over-doped Fe-based superconductor Ba_0.35Rb_0.65Fe_2As_2 as a function of hydrostatic pressure

    Full text link
    We report muon spin rotation experiments on the magnetic penetration depth lambda and the temperature dependence of lambda^{-2} in the over-doped Fe-based high-temperature superconductor (Fe-HTS) Ba_{1-x}Rb_ xFe_2As_2 (x = 0.65) studied at ambient and under hydrostatic pressures up to p = 2.3 GPa. We find that in this system lambda^{-2}(T) is best described by d-wave scenario. This is in contrast to the case of the optimally doped x = 0.35 system which is known to be a nodeless s^{+-}-wave superconductor. This suggests that the doping induces the change of the pairing symmetry from s^{+-} to d-wave in Ba_{1-x}Rb_{x}Fe_{2}As_{2}. In addition, we find that the d-wave order parameter is robust against pressure, suggesting that d is the common and dominant pairing symmetry in over-doped Ba_{1-x}Rb_{x}Fe_{2}As_{2}. Application of pressure of p = 2.3 GPa causes a decrease of lambda(0) by less than 5 %, while at optimal doping x = 0.35 a significant decrease of lambda(0) was reported. The superconducting transition temperature T_c as well as the gap to T_c ratio 2Delta/k_BT_c show only a modest decrease with pressure. By combining the present data with those previously obtained for optimally doped system x = 0.35 and for the end member x = 1 we conclude that the SC gap symmetry as well as the pressure effects on the SC quantities strongly depend on the Rb doping level. These results are discussed in the light of the putative Lifshitz transition, i.e., a disappearance of the electron pockets in the Fermi surface of Ba_{1-x}Rb_{x}Fe_{2}As_{2} upon hole doping.Comment: Accepted for publication in Physical Review

    Fermi-surface topological phase transition and horizontal order-parameter nodes in CaFe2_2As2_2 under pressure

    Get PDF
    Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2_2As2_2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2_2As2_2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the hole-like Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line.Comment: 13 pages, 8 color figures. This is an author-created, un-copyedited version of an article published in Scientific Reports. The published version is available online, together with Supplementary Information, at http://www.nature.com/articles/srep2639

    Azoxymethane Alters the Plasma Metabolome to a Greater Extent in Mice Fed a High-Fat Diet Compared to an AIN-93 Diet

    Get PDF
    Consumption of a high-fat diet (HFD) links obesity to colon cancer in humans. Our data show that a HFD (45% energy fat versus 16% energy fat in an AIN-93 diet (AIN)) promotes azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) formation in a mouse cancer model. However, the underlying metabolic basis remains to be determined. In the present study, we hypothesize that AOM treatment results in different plasma metabolomic responses in diet-induced obese mice. An untargeted metabolomic analysis was performed on the plasma samples by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). We found that 53 of 144 identified metabolites were different between the 4 groups of mice (AIN, AIN + AOM, HFD, HFD + AOM), and sparse partial least-squares discriminant analysis showed a separation between the HFD and HFD + AOM groups but not the AIN and AIN + AOM groups. Moreover, the concentrations of dihydrocholesterol and cholesterol were inversely associated with AOM-induced colonic ACF formation. Functional pathway analyses indicated that diets and AOM-induced colonic ACF modulated five metabolic pathways. Collectively, in addition to differential plasma metabolomic responses, AOM treatment decreases dihydrocholesterol and cholesterol levels and alters the composition of plasma metabolome to a greater extent in mice fed a HFD compared to the AIN

    Field Dependent Superfluid Density in the Optimally Doped SmFeAsO_(1-x)F_y Superconductor

    Full text link
    The magnetic field dependence of the in-plane magnetic penetration depth for optimally doped SmFeAsO_(1-x)F_y was investigated by combining torque magnetometry, SQUID magnetometry, and muon-spin rotation. The results obtained from these techniques show all a pronounced decrease of the superfluid density as the field is increased up to 1.4 T. This behavior is analysed within a two-band model with self-consistently derived coupled gaps, where the superfluid density related to the larger gap is field independent and the superfluid density related to the smaller gap is strongly suppressed with increasing field.Comment: 7 pages, 5 figure
    corecore