148 research outputs found

    Structural Investigation of the Oligosaccharide Portion Isolated from the Lipooligosaccharide of the Permafrost Psychrophile Psychrobacter arcticus 273-4

    Get PDF
    Psychrophilic microorganisms have successfully colonized all permanently cold environments from the deep sea to mountain and polar regions. The ability of an organism to survive and grow in cryoenviroments depends on a number of adaptive strategies aimed at maintaining vital cellular functions at subzero temperatures, which include the structural modifications of the membrane. To understand the role of the membrane in the adaptation, it is necessary to characterize the cell-wall components, such as the lipopolysaccharides, that represent the major constituent of the outer membrane. The aim of this study was to investigate the structure of the carbohydrate backbone of the lipooligosaccharide (LOS) isolated from the cold-adapted Psychrobacter arcticus 273-4. The strain, isolated from a 20,000-to-30,000-year-old continuously frozen permafrost in Siberia, was cultivated at 4 °C. The LOS was isolated from dry cells and analyzed by means of chemical methods. In particular, it was degraded either by mild acid hydrolysis or by hydrazinolysis and investigated in detail by (1)H and (13)C NMR spectroscopy and by ESI FT-ICR mass spectrometry. The oligosaccharide was characterized by the substitution of the heptose residue, usually linked to Kdo in the inner core, with a glucose, and for the unusual presence of N-acetylmuramic acid

    Structural characterization of core Region in Erwinia amylovora lipopolysaccharide.

    Get PDF
    Erwinia amylovora (E. amylovora) is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae. In this study, we reported the lipopolysaccharide (LPS) core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core), wabH and wabG (outer-LPS core mutants). The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR) spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR) mass spectrometry

    Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins

    Get PDF
    Es va publicar un treball amb esmenes a aquest article que es pot consultar a https://ddd.uab.cat/record/185349 (DOI 10.1186/s12934-015-0265-x)Background: lipopolysaccharide (LPS), also referred to as endotoxin, is the major constituent of the outer leaflet of the outer membrane of virtually all Gram-negative bacteria. The lipid A moiety, which anchors the LPS molecule to the outer membrane, acts as a potent agonist for Toll-like receptor 4/myeloid differentiation factor 2-mediated pro-inflammatory activity in mammals and, thus, represents the endotoxic principle of LPS. Recombinant proteins, commonly manufactured in Escherichia coli, are generally contaminated with endotoxin. Removal of bacterial endotoxin from recombinant therapeutic proteins is a challenging and expensive process that has been necessary to ensure the safety of the final product. -Results: as an alternative strategy for common endotoxin removal methods, we have developed a series of E. coli strains that are able to grow and express recombinant proteins with the endotoxin precursor lipid IVA as the only LPS-related molecule in their outer membranes. Lipid IVA does not trigger an endotoxic response in humans typical of bacterial LPS chemotypes. Hence the engineered cells themselves, and the purified proteins expressed within these cells display extremely low endotoxin levels. - Conclusions: this paper describes the preparation and characterization of endotoxin-free E. coli strains, and demonstrates the direct production of recombinant proteins with negligible endotoxin contamination

    Bioavailability and allergoprotective capacity of milk-associated conjugated linoleic acid in a murine model of allergic airway inflammation

    Get PDF
    BACKGROUND Cross-sectional epidemiological studies have demonstrated that farm milk from traditional farm settings possesses allergoprotective properties. Up to now, it has not been clarified which milk ingredient is responsible for protection against allergic diseases. As farm milk is rich in conjugated linoleic acids (CLA), it is hypothesized that this n-3 polyunsaturated fatty acid family contributes to the allergoprotective capacity of farm milk. We aim to prove this hypothesis in a murine model of allergic airway inflammation. METHODS To prove the bioavailability and allergoprotective capacity of milk-associated CLA in a standardized protocol, milk batches that differed significantly in terms of their CLA content were spray dried and incorporated into a basic diet by substituting the regular sunflower fat fraction. Initially, the milk CLA uptake from the diet was monitored via measurement of the CLA content in plasma and erythrocyte membranes obtained from supplemented mice. To determine whether a milk CLA-enriched diet possesses allergoprotective properties, female Balb/c mice were fed the milk CLA-enriched diet ahead of sensitization and a challenge with ovalbumin (OVA) and the parameters of airway inflammation and eisosanoid pattern were measured. RESULTS In animals, supplementation with a diet rich in milk CLA resulted in elevated CLA levels in plasma and erythrocyte membranes, indicating bioavailability of milk fatty acids. Though membrane-associated phospholipid patterns were affected by supplementation with milk CLA, this application neither reduced the hallmarks of allergic airway inflammation in sensitized and OVA-challenged mice nor modified the eiconsanoid pattern in the bronchoalveolar lavage fluid of these animals. CONCLUSION Milk-associated CLA was not capable of preventing murine allergic airway inflammation in an animal model of OVA-induced allergic airway inflammation

    Natural Killer T Cells Activated by a Lipopeptidophosphoglycan from Entamoeba histolytica Are Critically Important To Control Amebic Liver Abscess

    Get PDF
    The innate immune response is supposed to play an essential role in the control of amebic liver abscess (ALA), a severe form of invasive amoebiasis due to infection with the protozoan parasite Entamoeba histolytica. In a mouse model for the disease, we previously demonstrated that Jα18-/- mice, lacking invariant natural killer T (iNKT) cells, suffer from more severe abscess development. Here we show that the specific activation of iNKT cells using α-galactosylceramide (α-GalCer) induces a significant reduction in the sizes of ALA lesions, whereas CD1d−/− mice develop more severe abscesses. We identified a lipopeptidophosphoglycan from E. histolytica membranes (EhLPPG) as a possible natural NKT cell ligand and show that the purified phosphoinositol (PI) moiety of this molecule induces protective IFN-γ but not IL-4 production in NKT cells. The main component of EhLPPG responsible for NKT cell activation is a diacylated PI, (1-O-[(28∶0)-lyso-glycero-3-phosphatidyl-]2-O-(C16:0)-Ins). IFN-γ production by NKT cells requires the presence of CD1d and simultaneously TLR receptor signalling through MyD88 and secretion of IL-12. Similar to α-GalCer application, EhLPPG treatment significantly reduces the severity of ALA in ameba-infected mice. Our results suggest that EhLPPG is an amebic molecule that is important for the limitation of ALA development and may explain why the majority of E. histolytica-infected individuals do not develop amebic liver abscess

    The Lipopolysaccharide from Capnocytophaga canimorsus Reveals an Unexpected Role of the Core-Oligosaccharide in MD-2 Binding

    Get PDF
    Capnocytophaga canimorsus is a usual member of dog's mouths flora that causes rare but dramatic human infections after dog bites. We determined the structure of C. canimorsus lipid A. The main features are that it is penta-acylated and composed of a “hybrid backbone” lacking the 4′ phosphate and having a 1 phosphoethanolamine (P-Etn) at 2-amino-2-deoxy-d-glucose (GlcN). C. canimorsus LPS was 100 fold less endotoxic than Escherichia coli LPS. Surprisingly, C. canimorsus lipid A was 20,000 fold less endotoxic than the C. canimorsus lipid A-core. This represents the first example in which the core-oligosaccharide dramatically increases endotoxicity of a low endotoxic lipid A. The binding to human myeloid differentiation factor 2 (MD-2) was dramatically increased upon presence of the LPS core on the lipid A, explaining the difference in endotoxicity. Interaction of MD-2, cluster of differentiation antigen 14 (CD14) or LPS-binding protein (LBP) with the negative charge in the 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) of the core might be needed to form the MD-2 – lipid A complex in case the 4′ phosphate is not present
    corecore