200 research outputs found

    Interactive Surface Chemistry of CO2 and NO2 on Metal Oxide Surfaces: Competition for Catalytic Adsorption Sites and Reactivity

    Get PDF
    Cataloged from PDF version of article.Interactive surface chemistry of CO2 and NO2 on BaOx/Pt(111) model catalyst surfaces were investigated via X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques with a particular emphasis on the competition between different adsorbates for the catalytic adsorption sites and adsorbate-induced morphological changes. After NO2 adsorption, nitrated BaO x/Pt(111) surfaces do not reveal available adsorption sites for CO2 at 323 K, irrespective of the presence/absence of exposed Pt sites on the surface. Although NO2 adsorption on thick BaO x(>10MLE)/Pt(111) overlayers at 323 K leads to the formation of predominantly nitrate species, NO2 adsorption on the corresponding carbonated surface leads to the formation of coexisting nitrates and nitrites. The presence of carbonates on BaOx/Pt(111) overlayers does not prevent NO2 uptake. Carbonated BaOx(1.5 MLE)/Pt(111) surfaces (with exposed Pt sites) obtained via CO2 adsorption can also further interact with NO2, forming surface nitrate/nitrite species, accompanied by the transformation of surface carbonates into bulk carbonate species. These results suggest that the nitrate formation process requires the presence of two adjacent unoccupied adsorption sites. It is apparent that in the presence of both NO2 and CO2, carbonate species formed on Lewis base (O2-) sites enable the formation of nitrites on Lewis acid (Ba2+) sites. Thermal aging, nitration, and carbonation have a direct impact on the morphology of the two-/three-dimensional (2D/3D) BaO x aggregates on Pt(111). While thermal aging in vacuum leads to the sintering of the BaOx domains, nitration and carbonation results in redispersion and spreading of the BaOx domains on the Pt(111) substrate. © 2013 American Chemical Society.

    Are Au nanoparticles on oxygen free supports catalytically active?

    Get PDF
    Gold nanoparticles Au NPs on oxygen free supports were examined using near ambient pressure X ray photoelectron spectroscopy NAP XPS under CO oxidation conditions, and ex situ using scanning electron microscopy SEM and transmission electron microscopy TEM . Our observations demonstrate that Au NPs supported on carbon materials are inactive, regardless of the preparation method. Ozone O3 treatment of carbon supports leads oxygen functionalization of the supports. When subsequently exposed to a CO feed, CO is oxidized by the functionalized sites of the carbon support via a stoichiometric pathway. Microscopy reveals that the reaction with CO does not change the morphology of the Au NPs. In situ XPS reveals that the O3 treatment gives rise to additional Au 4f and O 1s peaks at binding energies of 85.25 85.6 eV and 529.4 530 eV, respectively, which are assigned to the presence of Au oxide. A surface oxide phase is formed during the activation of Au NPs supported on Au foil by O3 treatment. However, this phase decomposes in vacuum and the remaining low coordinative atoms do not have sufficient catalytic properties to oxidize CO, so the size reduction of Au NPs and or oxidation of Au NPs is not sufficient to activate A

    Pd single-atom sites on the surface of PdAu nanoparticles: A DFT-based Topological search for suitable compositions

    Get PDF
    Structure of model bimetallic PdAu nanoparticles is analyzed aiming to find Pd:Au ratios optimal for existence of Pd1 single-atom surface sites inside outer Au atomic shell. The analysis is performed using density-functional theory (DFT) calculations and topological approach based on DFT-parameterized topological energy expression. The number of the surface Pd1 sites in the absence of adsorbates is calculated as a function of Pd concentration inside the particles. At low Pd contents none of the Pd atoms emerge on the surface in the lowest-energy chemical orderings. However, surface Pd1 sites become stable, when Pd content inside a Pd-Au particle reaches ca. 60%. Further Pd content increase up to almost pure Pd core is accompanied by increased concentration of surface Pd atoms, mostly as Pd1 sites, although larger Pd ensembles as dimers and linear trimers are formed as well. Analysis of the chemical orderings inside PdAu nanoparticles at different Pd contents revealed that enrichment of the subsurface shell by Pd with predominant occupation of its edge positions precedes emergence of Pd surface species

    Role of the Exposed Pt Active Sites and BaO2 Formation in Nox Storage Reduction Systems: A Model Catalyst Study on BaOx/Pt(111)

    Get PDF
    Cataloged from PDF version of article.BaOx(0.5 MLE - 10 MLE)/Pt(111) (MLE: monolayer equivalent) surfaces were synthesized as model NOx storage reduction (NSR) catalysts. Chemical structure, surface morphology, and the nature of the adsorbed species on BaOx/Pt(111) surfaces were studied via X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), and low-energy electron diffraction (LEED). For theta(BaOx) = 2.5 MLE) were found to be amorphous. Extensive NO2 adsorption on BaOx(10 MLE)/Pt(111) yields predominantly nitrate species that decompose at higher temperatures through the formation of nitrites. Nitrate decomposition occurs on BaOx(10 MLE)/Pt(111) in two successive steps: (1) NO(g) evolution and BaO2 formation at 650 K and (2) NO(g) + O-2(g) evolution at 700 K. O-2(g) treatment of the BaOx(10 MLE)/Pt(111) surface at 873 K facilitates the BaO2 formation and results in the agglomeration of BaOx domains leading to the generation of exposed Pt(111) surface sites. BaO2 formed on BaOx(10 MLE)/Pt(111) is stable even after annealing at 1073 K, whereas on thinner films (theta(BaOx) = 2.5 MLE), BaO2 partially decomposes into BaOx indicating that small BaO2 clusters in close proximity of the exposed Pt(111) sites are prone to decomposition. Nitrate decomposition temperature decreases monotonically from 550 to 375 K with decreasing BaOx coverage within theta(BaOx) = 0.5 to 1.0 MLE. Nitrate decomposition occurs at a rather constant temperature range of 650-700 K for thicker BaOx overlayers (2.5 MLE < theta(BaOx) < 10 MLE). These two distinctly characteristic BaOx-coverage-dependent nitrate decomposition regimes are in very good agreement with the observation of the so-called "surface" and "bulk" barium nitrates previously reported for realistic NSR catalysts, clearly demonstrating the strong dependence of the nitrate thermal stability on the NOx storage domain size

    Combined in situ XPS and PTRMS study of ethylene epoxidation over silver

    Get PDF
    Ethylene epoxidation over silver was investigated by combined in-situ X-ray photoelectron spectroscopy (XPS) and proton-transfer reaction mass-spectrometry (PTRMS) at temperatures from 300 to 520 K and in the pressure range from 0.07 to 1 mbar. Ethylene oxide was present among the reaction products at T 420 ≥ K and P ≥ 0.3 mbar. The catalytically active surface contains two oxygen species – nucleophilic and electrophilic oxygen. The observed correlation between the abundance of electrophilic oxygen and the yield of ethylene oxide expressed as C2H4O partial pressure indicates that namely this oxygen species oxidizes ethylene to ethylene oxide. Opposite trend is observed for nucleophilic oxygen: the higher is the abundance of this species, the lower is the yield of ethylene oxide. This result is in line with the known fact that nucleophilic oxygen due to its oxidic nature is active in total oxidation of ethylene to CO2 and H2O. The low activity of silver at T < 420 K is caused by the presence of carbonates and carbonaceous residues at the silver surface that reduce the available silver surface area for the catalytic reaction. Reduction of the surface area available for the formation of active species due to accumulation of the embedded oxygen species explains also the decrease of the rate of ethylene oxide formation with time observed for T 470 ≥ K

    Quantum interference in nanofractals and its optical manifestation

    Full text link
    We consider quantum interferences of ballistic electrons propagating inside fractal structures with nanometric size of their arms. We use a scaling argument to calculate the density of states of free electrons confined in a simple model fractal. We show how the fractal dimension governs the density of states and optical properties of fractal structures in the RF-IR region. We discuss the effect of disorder on the density of states along with the possibility of experimental observation.Comment: 19 pages, 6 figure

    Oxygen transport in Pr nickelates: Elucidation of atomic-scale features

    Full text link
    Pr2NiO4+δ oxide with a layered Ruddlesden–Popper structure is a promising material for SOFC cathodes and oxygen separation membranes due to a high oxygen mobility provided by the cooperative mechanism of oxygen migration involving both interstitial oxygen species and apical oxygen of the NiO6 octahedra. Doping by Ca improves thermodynamic stability and increases electronic conductivity of Pr2 − xCaxNiO4+δ, but decreases oxygen mobility due to decreasing the oxygen excess and appearing of 1–2 additional slow diffusion channels at x ≥ 0.4, probably, due to hampering of cooperative mechanism of migration. However, atomic-scale features of these materials determining oxygen migration require further studies. In this work characteristics of oxygen diffusion in Pr2 − xCaxNiO4+δ (x = 0–0.6) are compared with results of the surface analysis by X-ray photoelectron spectroscopy and modeling of the interstitial oxygen migration by the plane-wave density functional theory calculations. According to the X-ray photoelectron spectroscopy data, the surface is enriched by Pr for undoped sample and by Ca for doped ones. The O1s peak at ~531 eV corresponding to a weakly bound form of surface oxygen located at Pr cations disappears at ~500 °C. Migration of interstitial oxygen was modeled for a I4/mmm phase of Pr2NiO4+δ. The interstitial oxygen anion repulses the apical one in the NiO6 octahedra pushing it into the tetrahedral site between Pr cations. The calculated activation barrier of this migration is equal to 0.585 eV, which reasonably agrees with the experimental value of 0.83 eV obtained by the oxygen isotope exchange method. At the same time, for the model compound Ca2NiO4+δ, obtained by isomorphic substitution of Pr by Ca in Pr2NiO4+δ, calculations implied formation of the peroxide ion comprised of interstitial and lattice oxygen species not revealed in the case of incomplete substitution (up to PrCaNiO4+δ composition). Hence, calculations in the framework of the plane-wave density functional theory provide a realistic estimation of specificity of oxygen migration features in Pr2NiO4+δ doped by alkaline-earth metals. © 2019 Elsevier B.V.Russian Science Foundation, RSF: 16-13-00112Support by Russian Science Foundation (Project 16-13-00112 ) is gratefully acknowledged
    corecore