57 research outputs found

    Bayesian meta-analytical methods to incorporate multiple surrogate endpoints in drug development process.

    Get PDF
    A number of meta-analytical methods have been proposed that aim to evaluate surrogate endpoints. Bivariate meta-analytical methods can be used to predict the treatment effect for the final outcome from the treatment effect estimate measured on the surrogate endpoint while taking into account the uncertainty around the effect estimate for the surrogate endpoint. In this paper, extensions to multivariate models are developed aiming to include multiple surrogate endpoints with the potential benefit of reducing the uncertainty when making predictions. In this Bayesian multivariate meta-analytic framework, the between-study variability is modelled in a formulation of a product of normal univariate distributions. This formulation is particularly convenient for including multiple surrogate endpoints and flexible for modelling the outcomes which can be surrogate endpoints to the final outcome and potentially to one another. Two models are proposed, first, using an unstructured between-study covariance matrix by assuming the treatment effects on all outcomes are correlated and second, using a structured between-study covariance matrix by assuming treatment effects on some of the outcomes are conditionally independent. While the two models are developed for the summary data on a study level, the individual-level association is taken into account by the use of the Prentice's criteria (obtained from individual patient data) to inform the within study correlations in the models. The modelling techniques are investigated using an example in relapsing remitting multiple sclerosis where the disability worsening is the final outcome, while relapse rate and MRI lesions are potential surrogates to the disability progression

    Creation of solitons and vortices by Bragg reflection of Bose-Einstein condensates in an optical lattice

    Get PDF
    We study the dynamics of Bose-Einstein condensates in an optical lattice and harmonic trap. The condensates are set in motion by displacing the trap and initially follow simple semiclassical paths, shaped by the lowest energy band. Above a critical displacement, the condensate undergoes Bragg reflection. For high atom densities, the first Bragg reflection generates a train of solitons and vortices, which destabilize the condensate and trigger explosive expansion. At lower densities, soliton and vortex formation requires multiple Bragg reflections, and damps the center-of-mass motion.Comment: 5 pages including 5 figures (for higher resolution figures please email the authors

    Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes

    Get PDF
    Background: Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. Methods: The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Results: Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Conclusions: Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately

    A Microsoft-Excel-based tool for running and critically appraising network meta-analyses--an overview and application of NetMetaXL.

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.BACKGROUND: The use of network meta-analysis has increased dramatically in recent years. WinBUGS, a freely available Bayesian software package, has been the most widely used software package to conduct network meta-analyses. However, the learning curve for WinBUGS can be daunting, especially for new users. Furthermore, critical appraisal of network meta-analyses conducted in WinBUGS can be challenging given its limited data manipulation capabilities and the fact that generation of graphical output from network meta-analyses often relies on different software packages than the analyses themselves. METHODS: We developed a freely available Microsoft-Excel-based tool called NetMetaXL, programmed in Visual Basic for Applications, which provides an interface for conducting a Bayesian network meta-analysis using WinBUGS from within Microsoft Excel. . This tool allows the user to easily prepare and enter data, set model assumptions, and run the network meta-analysis, with results being automatically displayed in an Excel spreadsheet. It also contains macros that use NetMetaXL's interface to generate evidence network diagrams, forest plots, league tables of pairwise comparisons, probability plots (rankograms), and inconsistency plots within Microsoft Excel. All figures generated are publication quality, thereby increasing the efficiency of knowledge transfer and manuscript preparation. RESULTS: We demonstrate the application of NetMetaXL using data from a network meta-analysis published previously which compares combined resynchronization and implantable defibrillator therapy in left ventricular dysfunction. We replicate results from the previous publication while demonstrating result summaries generated by the software. CONCLUSIONS: Use of the freely available NetMetaXL successfully demonstrated its ability to make running network meta-analyses more accessible to novice WinBUGS users by allowing analyses to be conducted entirely within Microsoft Excel. NetMetaXL also allows for more efficient and transparent critical appraisal of network meta-analyses, enhanced standardization of reporting, and integration with health economic evaluations which are frequently Excel-based.CC is a recipient of a Vanier Canada Graduate Scholarship from the Canadian Institutes of Health Research (funding reference number—CGV 121171) and is a trainee on the Canadian Institutes of Health Research Drug Safety and Effectiveness Network team grant (funding reference number—116573). BH is funded by a New Investigator award from the Canadian Institutes of Health Research and the Drug Safety and Effectiveness Network. This research was partly supported by funding from CADTH as part of a project to develop Excel-based tools to support the conduct of health technology assessments. This research was also supported by Cornerstone Research Group

    Protocol for the development of SPIRIT and CONSORT extensions for randomised controlled trials with surrogate primary endpoints: SPIRIT-SURROGATE and CONSORT-SURROGATE

    Get PDF
    Introduction Randomised controlled trials (RCTs) may use surrogate endpoints as substitutes and predictors of patient-relevant/participant-relevant final outcomes (eg, survival, health-related quality of life). Translation of effects measured on a surrogate endpoint into health benefits for patients/participants is dependent on the validity of the surrogate; hence, more accurate and transparent reporting on surrogate endpoints is needed to limit misleading interpretation of trial findings. However, there is currently no explicit guidance for the reporting of such trials. Therefore, we aim to develop extensions to the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) and CONSORT (Consolidated Standards of Reporting Trials) reporting guidelines to improve the design and completeness of reporting of RCTs and their protocols using a surrogate endpoint as a primary outcome. Methods and analysis The project will have four phases: phase 1 (literature reviews) to identify candidate reporting items to be rated in a Delphi study; phase 2 (Delphi study) to rate the importance of items identified in phase 1 and receive suggestions for additional items; phase 3 (consensus meeting) to agree on final set of items for inclusion in the extensions and phase 4 (knowledge translation) to engage stakeholders and disseminate the project outputs through various strategies including peer-reviewed publications. Patient and public involvement will be embedded into all project phases. Ethics and dissemination The study has received ethical approval from the University of Glasgow College of Medical, Veterinary and Life Sciences Ethics Committee (project no: 200210051). The findings will be published in open-access peer-reviewed publications and presented in conferences, meetings and relevant forums

    Protocol for the development of SPIRIT and CONSORT extensions for randomised controlled trials with surrogate primary endpoints: SPIRIT-SURROGATE and CONSORT-SURROGATE

    Get PDF
    Introduction Randomised controlled trials (RCTs) may use surrogate endpoints as substitutes and predictors of patient-relevant/participant-relevant final outcomes (eg, survival, health-related quality of life). Translation of effects measured on a surrogate endpoint into health benefits for patients/participants is dependent on the validity of the surrogate; hence, more accurate and transparent reporting on surrogate endpoints is needed to limit misleading interpretation of trial findings. However, there is currently no explicit guidance for the reporting of such trials. Therefore, we aim to develop extensions to the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) and CONSORT (Consolidated Standards of Reporting Trials) reporting guidelines to improve the design and completeness of reporting of RCTs and their protocols using a surrogate endpoint as a primary outcome. Methods and analysis The project will have four phases: phase 1 (literature reviews) to identify candidate reporting items to be rated in a Delphi study; phase 2 (Delphi study) to rate the importance of items identified in phase 1 and receive suggestions for additional items; phase 3 (consensus meeting) to agree on final set of items for inclusion in the extensions and phase 4 (knowledge translation) to engage stakeholders and disseminate the project outputs through various strategies including peer-reviewed publications. Patient and public involvement will be embedded into all project phases. Ethics and dissemination The study has received ethical approval from the University of Glasgow College of Medical, Veterinary and Life Sciences Ethics Committee (project no: 200210051). The findings will be published in open-access peer-reviewed publications and presented in conferences, meetings and relevant forums
    • …
    corecore