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We study the dynamics of Bose-Einstein condensates in an optical lattice and harmonic trap. The
condensates are set in motion by displacing the trap and initially follow simple semiclassical paths,
shaped by the lowest energy band. Above a critical displacement, the condensate undergoes Bragg
reflection. For high atom densities, the first Bragg reflection generates a train of solitons and vortices,
which destabilize the condensate and trigger explosive expansion. At lower densities, soliton and vortex
formation requires multiple Bragg reflections, and damps the center-of-mass motion.
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and phase profiles similar to those used to generate sol- ture [28].
Optical lattices (OLs) provide unprecedented control of
transport through the energy bands of periodic quantum
systems. This has led to experimental demonstrations of
Bloch oscillations [1] and quantized Wannier-Stark lad-
ders [2] for noninteracting ultracold alkali atoms. There is
also great interest in understanding the behavior of
Bose-Einstein condensates (BECs), formed from inter-
acting alkali atoms, in OLs [3–16]. Predictions [4,5] that
accelerated BECs will perform Bloch oscillations, whose
turning points at the top of the energy band correspond to
successive Bragg reflections, have been confirmed in ex-
periments [7,12] on 87Rb BECs with equilibrium peak
densities n0 & 1014 cm�3. For n0 * 1014 cm�3, more
complex motion has been observed [11,12], which cannot
be explained by Bragg reflection or analogous semiclas-
sical models of energy band transport. Previous numeri-
cal studies of condensate dynamics in OLs have used
one-dimensional (1D) and three-dimensional (3D)
Gross-Pitaevskii equations [5,8,11,16]. They provide
invaluable insights for understanding the center-of-
mass motion of the BEC, but have not related this
motion to changes in the internal structure of the atom
cloud, in particular, dynamical excitations such as sol-
itons and vortices. Producing such excitations in a
controlled way requires state-of-the-art experimental
techniques, which involve manipulating the phase and/
or density profile of the BEC [15,17–20], rotating the
confining trap [21,22], moving a laser beam through the
atom cloud [13,23,24], or tuning the interatomic interac-
tions [25].

In this Letter, we show that Bragg reflection provides a
new mechanism for generating solitons and vortices in
BECs [26]. Moreover, these excitations can have a dra-
matic effect on the evolution of the atom cloud. At the first
Bragg reflection, the condensate wave function is a stand-
ing wave with nodes at each maximum in the OL poten-
tial. At each node, the condensate phase changes abruptly
by �. Bragg reflection therefore imprints atom density
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itons in experiment [15,17–20]. The effect of this im-
printing on the condensate dynamics depends critically
on the atom density. For condensates with n0 *

1014 cm�3, realized in recent experiments [11,12], it
leads to the self-assembly of a chain of stationary soli-
tons, which decay rapidly into vortex rings. Strong inter-
actions between the vortices destabilize the atom cloud,
causing it to explode and fragment. For n0 & 1014 cm�3,
the standing wave formed at the first Bragg reflection
produces no dynamical excitations. But subsequent
Bragg reflections do generate solitons and vortices, which
damp the center-of-mass motion. The dissipation and
instability processes that we identify could play a key
role in the complex dynamics recently observed for high-
density condensates in OLs [11,12].

We consider condensates formed from NA 87Rb atoms
in a 1D OL and a 3D harmonic trap, which is symmetrical
under rotation about the OL (x) axis [27]. The potential
energy profile of the OL is VOL�x� � V0 sin2��x=d�. As
in recent experiments [11], d � 397:5 nm and V0 � h�
5:6 kHz � 1:53ER, where ER is the recoil energy. The
confining potential energy is V�x; r� � VOL�x� �
1
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2�, where r is the radial coordinate, m is
the mass of a single atom, and !x;!r are frequencies
of the harmonic trap. For most of the results presented
here, !x � 2�� 50 rad s�1, !r � 2�� 35 rad s�1,
NA � 1:2� 104, and n0 � 0:43� 1014 cm�3 (system A).
We also consider a second set of parameters, !x � 2��
8:7 rad s�1, !r � 2�� 90 rad s�1, and NA � 3� 105

(system B), corresponding to recent experiments [11]. In
this case, n0 is sufficiently high ( � 1:5� 1014 cm�3) for
the standing wave formed during Bragg reflection to have
a particularly dramatic effect on the BEC. For both sets
of parameters, !x is small enough to ensure that
the harmonic potential energy variation across each OL
period is much less than the width � � h� 2:4 kHz �
0:67ER of the lowest energy band. Consequently,
the harmonic trap only weakly perturbs the band struc-
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We determine the 3D density profile of the condensate
ground state by using the Crank-Nicolson method [5] to
solve the time-dependent Gross-Pitaevskii equation
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where r2 is the Laplacian in cylindrical coordinates,
a � 5:4 nm is the s-wave scattering length [29], and
��x; r; t� is the axially symmetrical condensate wave
function [16], normalized so that j�j2 is the number of
atoms per unit volume. The equilibrium density profile of
system A is shown in Fig. 1(a).

At t � 0, we disrupt the equilibrium by suddenly dis-
placing the harmonic potential through a distance �x
along the x axis [11]. This increases the initial potential
energy of the BEC by �V ’ 1

2m!
2
x��x�2 [Fig. 1(b)].

As the atoms start to move, this potential energy is
converted into kinetic energy, which determines how
far the BEC accelerates up the lowest energy band [28].
In order for the condensate to reach the top of
the band and therefore undergo Bragg reflection, �V
must be � �, which, for system A, requires �x �
�2�=m!2

x�
1=2 � 15 �m.

We now consider the condensate dynamics obtained
from Eq. (1) for �x � 10 �m, below the threshold for
Bragg reflection. Figure 2(a) shows that the mean (center-
of-mass) position of the BEC, hxi, undergoes simple
periodic motion, bounded by the harmonic trap. The
internal structure of the BEC is unaffected by this mo-
tion, being the same at t � 10:7 ms [Fig. 2(a) left inset]
and t � 21:3 ms [Fig. 2(a) right inset] as at t � 0. To
determine how the BEC moves in reciprocal space, we
calculate the Fourier transform of ��x; 0; t�. The Fourier
power, jf�kx; t�j2, corresponding to wave number kx, re-
mains narrow and changes periodically as t increases
[grey-scale plot in Fig. 2(b)]. Since the BEC’s internal
structure does not change with t when �x � 10 �m, the
form of jf�kx; t�j2 and the corresponding hxi versus t curve
[Fig. 2(a)] can be understood by considering the motion of
a point particle in the lowest energy band. The single-
particle trajectories x�t� and kx�t� in real and reciprocal
space are determined by the semiclassical equations of
motion dx=dt � �h�1dE�kx�=dkx and dkx=dt � �h�1Fx
FIG. 1. (a) Initial atom density profile of system A, along
r � 0. (b) Density profile and x dependence of harmonic
potential energy (dotted line) immediately after trap
displacement.
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[30], where E�kx� is the energy-wave-number dispersion
relation for the band, and Fx � �m!2

xx is the restoring
force along the x axis. In Fig. 2(b), the Fourier power
(grey-scale plot) is concentrated along the single-particle
kx�t� curve (white circles). The corresponding real-space
trajectory, x�t�, is indistinguishable from the plot of hxi
versus t shown in Fig. 2(a).

When �x is increased to 25 �m, above the threshold
for Bragg reflection, the mean x position of the BEC,
determined from Eq. (1), performs damped periodic
motion [solid curve in Fig. 2(c)]. In Fig. 2(d), the grey-
scale plot of jf�kx; t�j2 shows that the BEC’s mean kx value
increases approximately linearly with t and reaches
the Brillouin zone boundary at 2.6 ms. At this time, the
BEC undergoes Bragg reflection, which produces the
first (arrowed) turning point in Fig. 2(c). The quantum
calculations of hxi and jf�kx; t�j

2 deviate rapidly from the
FIG. 2. (a) hxi versus t for system A with �x � 10 �m.
Insets: grey-scale plots of density (black � high) in the x-r
plane (axes inset) at t � 10:7 ms (left) and 21.3 ms (right).
(b) Grey-scale plot: jf�kx; t�j2 (white � 0, black � high) for
system A with �x � 10 �m. Open circles: points on semiclas-
sical trajectory kx�t�. (c) Solid curve: hxi versus t for system A
with �x � 25 �m. The arrow marks the first turning point.
Dashed curve: semiclassical orbit x�t�. (d) Same as (b), but for
�x � 25 �m. (e) hxi versus t for system B with �x � 150 �m.
Insets: grey-scale plots of density (black � high) in the x-r
plane at t � 13:8 ms (top) and 18 ms (middle). The lower inset
shows an enlargement of the boxed region in the upper inset.
(f) Same as (b), but for system B with �x � 150 �m and
omitting the kx�t� curve which, for t & 13 ms, is indistinguish-
able from the narrow Fourier distribution.
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corresponding semiclassical trajectories, x�t� and kx�t�,
shown, respectively, by the dashed curve and open circles
in Figs. 2(c) and 2(d). For t * 7:5 ms, the oscillations in
hxi are damped and multiple peaks appear in jf�kx; t�j2,
which spreads throughout the Brillouin zone. This devia-
tion from single-particle behavior indicates that the
BEC’s center-of-mass motion is strongly affected by
changes in its internal structure. Key stages in the evolu-
tion of the density profile are shown in Fig. 3. As t
increases from zero [Fig. 3(a)], the density minima
deepen and fall to zero at the first Bragg reflection, which
we now analyze.

The lower curves in Figs. 4(a)–4(c) show j��x; 0; t�j2

just before �t � 2 ms�, at �t � 2:6 ms�, and just after
�t � 3 ms� the first Bragg reflection. The upper curves
show the wave function phase, ��x�, modulo 2�. Just
before reflection [Fig. 4(a)], the density near the center
of the BEC has a minimum value of �1013 cm�3, which
is approximately half that at t � 0 (Fig. 1). The
local velocity along the x direction, vx � � �h=m�d�=dx,
is > 0 throughout the BEC. At the point of Bragg reflec-
tion [Fig. 4(b)], the density minima fall to zero at each
peak in VOL�x�. At each zero, � changes abruptly by �
[upper curve in Fig. 4(b)]. Away from the discontinuities,
d�=dx ’ 0, indicating that the BEC is at rest. This varia-
tion of density and phase demonstrates that a standing
wave forms during Bragg reflection. In recent experi-
ments, laser illumination was used to produce individual
density minima and � phase shifts [15,17–20], which
subsequently evolved into dark solitons. By analogy, the
standing wave might be expected to generate a chain of
stationary solitons each of width w � �2�anM�

�1=2,
where nM is the local mean atom density [19]. At the first
Bragg reflection, nM ’ 3� 1013 cm�3 near the center of
the BEC in system A [see Fig. 4(b)], and so w ’ 2:5d.
Since w is much larger than the width ( � d) of the
density minima in the standing wave, the first Bragg
reflection does not produce solitons in system A.
Instead, after reflection, the density minima rise away
from zero and d�=dx becomes negative for all x
[Fig. 4(c)], as the BEC starts to move from right to left.
FIG. 3. Grey-scale plots of density (white � 0, black � high)
in the x-r plane (axes inset) for system A with �x � 25 �m
and t � 0 ms (a), 7.8 ms (b), 10.9 ms (c). Vertical dotted lines
indicate x � 0 in each case. The horizontal bar shows scale. The
cross in (b) marks the center of a soliton. The region within the
dashed box in (c) is shown in Fig. 5(a).
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We now consider the condensate motion for t * 5 ms.
Figure 3(b) shows the density profile at the second Bragg
reflection, when t � 7:8 ms. Again a standing wave is
formed, which creates nodal planes in the density profile
[white stripes in Fig. 3(b)] at each maximum in VOL�x�.
However, in contrast to the first Bragg reflection, the
standing wave now disrupts the internal structure of the
condensate sufficiently to allow a soliton, marked by
the cross in Fig. 3(b), to form across several OL periods.
Subsequent Bragg reflections generate more solitons,
which have a pronounced effect on the condensate’s in-
ternal structure and center-of-mass motion. To illustrate
this, Fig. 3(c) shows the density profile at t � 10:9 ms. For
x < 0, there is an extended soliton (white crescent shape),
whose wave front has been curved by refraction originat-
ing from the nonuniform density [13]. This refraction is
the precursor of snake instability [13], which causes the
solitons to decay into vortex rings.When viewed in a two-
dimensional (x; r) cross section, each vortex ring appears
as two vortices with opposite circulation, such as those
enclosed by arrows in Fig. 3(c). At the center of each
vortex, j�j2 � 0. The vortices can be seen more clearly in
Figs. 5(a) and 5(b), which show, respectively, enlarge-
ments of the density profile within the dashed box in
Fig. 3(c), and the corresponding phase. At the center of
the soliton represented by the white crescent in Fig. 5(a),
the phase changes abruptly from 3�=2 (dark grey) to �=2
(light grey) as x increases. Around the two vortices, the
phase [Fig. 5(b)] changes continuously from 0 (white) to
2� (black), indicating quantized circulation in the direc-
tion of the arrows. Vortex formation is the main cause of
damping in the center-of-mass motion [Fig. 2(c)]. A
crucial aspect of this damping mechanism is that the
soliton formation and subsequent vortex shedding occur
when the condensate is almost at rest. It is therefore
fundamentally different from the phonon emission pro-
cess used to interpret experiments on system B [11],
which occurs when vx exceeds a critical value of
�5 mm s�1. It is also unrelated to the damping found in
1D simulations of Bloch-oscillating condensates [31],
which cannot include the effects of vortex formation.
We now relate our calculations to experiments on
system B [11]. Figures 2(e) and 2(f) show the time evo-
lution of hxi and jf�kx; t�j2 for this system, after a large
FIG. 4. Lower curves: density profiles along r � 0 for
the condensate in system A with �x � 25 �m and t � 2 ms
(a), 2.6 ms (b), 3 ms (c). Upper curves show ��x� modulo 2�,
with vertical scale indicated by bars of length �.
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FIG. 5. (a) Grey-scale plot of density for system A within
the dashed box in Fig. 3(c) (white � 0, black � high). Arrows
show the direction of circulation around vortices. (b) Grey-
scale plot of � (white � 0, black � 2�).
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trap displacement of 150 �m. As in system A, the first
Bragg reflection generates a density node and a � phase
shift at each maximum in VOL�x�. But since nM is much
larger in system B ( � 1:6� 1014 cm�3 near the BEC
center at the first Bragg reflection), w ’ d. Since w is so
closely matched to the width of the density minima in the
standing wave, Bragg reflection causes the self-assembly
of �10 stationary solitons, which form a chain across the
central third of the BEC. Figure 2(e) shows the compact
cigar-shaped density profile of the BEC just after the first
Bragg reflection (upper inset). The region within the box
is shown enlarged in the lower inset of Fig. 2(e), which
reveals three stationary solitons (extended white areas).
The time taken for solitons to develop following phase
imprinting is proportional to the distance l over which the
phase changes by� [15]. In a standing wave, l ’ 0, and so
the first Bragg reflection and the formation of the soliton
chain occur almost instantaneously. The solitons decay
rapidly into a chain of vortex rings, which form a com-
plex interacting system. The interactions create a large
internal strain, which causes the BEC to explode radially,
resulting in the diffuse and fragmented atom density
profile shown in the middle inset of Fig. 2(e) [32]. The
explosion has a dramatic effect on the kx distribution of
the atoms [Fig. 2(f)], which is initially extremely narrow
but, at the point of Bragg reflection, spreads throughout
the Brillouin zone. This could account for the broad
momentum distribution observed when high-density
BECs undergo Bragg reflection [12].

In summary, we have investigated how Bragg reflec-
tion affects the internal structure and center-of-mass
motion of condensates accelerating through an OL.
When the atom density is high enough to ensure that w &

d, the density zeros and � phase shifts imprinted by
the first Bragg reflection generate a train of stationary
solitons, which decay rapidly into vortex rings. Strong
interactions between the ensemble of vortices have a
catastrophic effect on the condensate, causing it to
undergo explosive expansion. This dynamical regime is
a unique feature of condensates in an OL and should be
experimentally accessible in existing systems [11,12]. For
110404-4
lower atom densities, soliton formation requires multiple
Bragg reflections. The subsequent decay of the solitons
into vortex rings provides a new dissipation mechanism,
which could contribute to the damping of the center-of-
mass oscillations observed in experiment [11].
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