1,032 research outputs found

    Magnetic excitations of perovskite rare-earth nickelates: RNiO3_3

    Get PDF
    The perovskite nickelates RNiO3_3 (R: rare-earth) have been studied as potential multiferroic compounds. A certain degree of charge disproportionation in the Ni ions has been confirmed by high resolution synchrotron power diffraction: instead of the nominal Ni3+^{3+} valence, they can have the mixed-valence state Ni(3−δ)+^{(3-\delta)+} and Ni(3+δ)+^{(3+\delta)+}, though agreement has not been reached on the precise value of δ\delta (e.g. for NdNiO3_3, δ=0.0\delta=0.0 and δ=0.29\delta=0.29 were reported). Also, the magnetic ground state is not yet clear: collinear and non-collinear Ni-O magnetic structures have been proposed to explain neutron diffraction and soft X-ray resonant sccattering results in these compounds, and more recently a canted antiferromagnetic spin arrangement was proposed on the basis of magnetic susceptibility measurements. This scenario is reminiscent of the situation in the half-doped manganites. In order to gain insight into the ground state of these compounds, we studied the magnetic excitations of some of the different phases proposed, using a localized spin model for a simplified spin chain which could describe these compounds. We first analize the stability of the collinear, orthogonal, and intermediate phases in the classical case. We then explore the quantum ground state indirectly, calculating the spin excitations obtained for each phase, using the Holstein-Primakoff transformation and the linear spin-wave approximation. For the collinear and orthogonal (θ=π/2\theta=\pi/2) phases, we predict differences in the magnon spectrum which would allow to distinguish between them in future inelastic neutron scattering experiments

    Quantum magnons of the intermediate phase of half-doped manganite oxides

    Get PDF
    At half doping, the ground state of three-dimensional manganite perovskite oxides like R1−x_{1-x}Cax_xMnO3_3, where R is a trivalent ion such as La, Pr, etc, is still unclear. Many experimental findings agree better with the combined magnetic, charge, and orbital order characteristic of the "intermediate phase", introduced by Efremov et al. in 2004 [Nature Mats. 3, 853]. This phase consists of spin dimers (thus incorporating aspects of the Zener polaron phase (ZP) proposed in 2002 by Daoud-Aladine et al. [Phys. Rev. Lett. 89, 097205]), though formed by a pair of parallel Mn spins of different magnitude, in principle (thereby allowing for a degree of Mn charge disproportionation: not necessarily as large as that of Mn3+^{3+}-Mn4+^{4+} in Goodenough's original CE phase [Phys. Rev. 100, 564 (1955)]). In the intermediate phase, consecutive spin dimers localed along the planar zig-zag chains are oriented at a constant relative angle Φ\Phi between them. Varying Mn-charge disproportionation and Φ\Phi, the intermediate phase should allow to continuously interpolate between the two limiting cases of the CE phase and the dimer phase denoted as "orthogonal intermediate π/2−\pi/2-phase". It is not easy to find a microscopic model able to describe the phenomenological intermediate phase adequately for the spin, charge, and orbital degrees of freedom simultaneously. Here, we study the quantum spin excitations of a planar model of interacting localized spins, which we found can stabilize the intermediate phase classically. We compare the quantum magnons of the intermediate phase with those of the CE and orthogonal π/2\pi/2 phases, in the context of recent experimental results.Comment: 5 pages, 8 figures Manuscript accepted 29 April 2013, by IEEE - Transactions on Magnetic

    The accretion disk in the post period-minimum cataclysmic variable SDSS J080434.20+510349.2

    Full text link
    This study of SDSS0804 is primarily concerned with the double-hump shape in the light curve and its connection with the accretion disk in this bounce-back system. Time-resolved photometric and spectroscopic observations were obtained to analyze the behavior of the system between superoutbursts. A geometric model of a binary system containing a disk with two outer annuli spiral density waves was applied to explain the light curve and the Doppler tomography. Observations were carried out during 2008-2009, after the object's magnitude decreased to V~17.7(0.1) from the March 2006 eruption. The light curve clearly shows a sinusoid-like variability with a 0.07 mag amplitude and a 42.48 min periodicity, which is half of the orbital period of the system. In Sept. 2010, the system underwent yet another superoutburst and returned to its quiescent level by the beginning of 2012. This light curve once again showed a double-humps, but with a significantly smaller ~0.01mag amplitude. Other types of variability like a "mini-outburst" or SDSS1238-like features were not detected. Doppler tomograms, obtained from spectroscopic data during the same period of time, show a large accretion disk with uneven brightness, implying the presence of spiral waves. We constructed a geometric model of a bounce-back system containing two spiral density waves in the outer annuli of the disk to reproduce the observed light curves. The Doppler tomograms and the double-hump-shape light curves in quiescence can be explained by a model system containing a massive >0.7Msun white dwarf with a surface temperature of ~12000K, a late-type brown dwarf, and an accretion disk with two outer annuli spirals. According to this model, the accretion disk should be large, extending to the 2:1 resonance radius, and cool (~2500K). The inner parts of the disk should be optically thin in the continuum or totally void.Comment: 12 pages, 15 figures, accepted for publication in A&

    La yuca en la alimentacion de cerdos

    Get PDF

    Cómo elegir una función de activación para el aprendizaje profundo

    Get PDF
    Activation functions are important in each layer of the neural network because they allow the network to learn complex relationships between the input data and the output data. They also introduce nonlinearity into the network, which is essential for learning patterns in data. Activation functions play a critical role in the training and optimization of deep learning models, and choosing the right activation function can significantly impact the model’s performance. This article presents a summary of the features of these functions.  Las funciones de activación son importantes en cada capa de la red neuronal porque permiten a la red aprender relaciones complejas entre los datos de entrada y los de salida. También introducen la no linealidad en la red, que es esencial para aprender patrones en los datos. Las funciones de activación desempeñan un papel fundamental en el entrenamiento y la optimización de los modelos de aprendizaje profundo, y la elección de la función de activación adecuada puede influir significativamente en el rendimiento del modelo. Este artículo presenta un resumen de las características de estas funciones. &nbsp

    Evaluation of additional head of biceps brachii: a study with autopsy material

    Get PDF
    Additional head of the biceps brachii (AHBB) has been reported in different population groups with a frequency of 1–25%. The purpose of this study was to determine the incidence and morphologic expression of the AHBB as determined in a sample of the Colombian population. An exploration was conducted with 106 arms corresponding to unclaimed corpses autopsied at Institute of Legal and Forensic Medicine of Bucaramanga, Colombia. Using medial incision involvingskin, subcutaneous tissue, and brachial fascia, the heads of the biceps and their innervating branches were visualised. One AHBB was observed in 21 (19.8%) of the arms evaluated, with non-significant difference (p = 0.568) per side of presentation: 11 (52.4%) cases on the right side and 10 (47.6%) on the left side. All AHBBs were originated in the infero-medial segment of the humerus, with a mean thickness of 17.8 ± 6.8 mm. In 4 (19%) cases the fascicle was thin, less than 10 mm; in 7 (33.3%) cases it was of medium thickness, between 11 and 20 mm, whereas in 47.6% it was longer than 20 mm. The length of the AHBB was 118.3 ± 26.8 mm; its motor point supplied by the musculocutaneous nerve was located at 101.3 ± 20.9 mm of the bi-epicondylar line. The incidence of AHBB in this study is located at the upper segment of what has been reportedin the literature and could be a morphologic trait of the Colombian population; in agreement with prior studies, the origin was the infero-medial surface of the humerus
    • …
    corecore