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a b s t r a c t

To gain insight into the ground state of perovskite nickelates RNiO3 (R: rare-earth), in particular charge
disproportionation of the Ni ions and the magnetic configuration, we studied the magnetic excitations of
the collinear, orthogonal and intermediate phases proposed for these materials. We used a localized spin
model, including two kinds of Ni-spin magnitudes to describe an eventual charge disproportionation. For
the magnetic couplings, we considered Heisenberg-like interactions up to next-nearest-neighbors, for
the ferromagnetic and antiferromagnetic couplings present in the collinear phases. To describe the non-
collinear phases, as proposed for other multiferroics, we considered Dzyaloshinskii–Moriya-type cou-
plings to allow for the possibility of a relative angle θ, between nearest-neighbor spins in the two dif-
ferent magnetic sublattices. Using a simplified spin chain model for these compounds, we first analysed
the stability of the collinear, orthogonal, and intermediate phases in the classical case. We then explored
the quantum ground state indirectly, calculating the spin excitations obtained for each phase, using the
Holstein–Primakoff transformation and the linear spin-wave approximation. For the collinear and or-
thogonal ( /2θ π= ) phases we predict differences in the magnon spectra, concretely in the number of
magnon branches or the magnitude of the magnon gap, which would allow to distinguish between these
phases, and in particular probe the charge disproportionation, in future experiments such as inelastic
neutron scattering or resonant inelastic X-ray scattering.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The ferroelectric oxides with magnetic ordering have attracted
much attention since they offer the possibility of controlling the
electric polarization or the magnetic ordering by applying mag-
netic or electric fields, respectively, a desirable feature in the de-
sign of electronic devices [1]. However, finding these multiferroic
oxides has not been an easy task. Though there are some of them
which have a simultaneous ferroelectric character and magnetic
ordering, usually the coupling between these is very weak and
therefore poorly controlled with applied fields. In 2004 Efremov
et al. [2] suggested that in manganites (RMnO3 R: rare-earth), in
addition to simultaneous charge and magnetic ordering, a charge
disproportionation (CD) of the Mn ions would be needed for these
materials to become multiferroic. This CD means that instead of
the nominal valence Mn3+, mixed valences Mn 3 δ( − )+ and Mn 3 δ( + )

should be present.
The perovskite nickelates RNiO3 (R: rare-earth) also have been
ico Bariloche-CNEA, Av. Bus-

(I.R. Buitrago),
studied as potential multiferroic compounds. A certain degree of
charge disproportionation in the Ni ions has been confirmed by
high resolution synchrotron powder diffraction [3]: instead of the
nominal Ni3+ valence, they can have the mixed-valence state
Ni 3 δ( − )+ and Ni 3 δ( + )+, though agreement has not been reached on
the precise value of δ (e.g. for NdNiO3, 0.0δ = [4] and 0.29δ = [5]
were reported) as we will detail below. Also, the magnetic ground
state is not yet clear: as we will describe below, collinear [6] and
non-collinear [7] Ni–O magnetic structures have been proposed to
explain neutron diffraction and soft X-ray resonant scattering re-
sults in these compounds, and more recently a canted anti-
ferromagnetic spin arrangement was proposed on the basis of
magnetic susceptibility measurements [8]. This scenario is re-
miniscent of the situation in the half-doped manganites.

Van den Brink and Khomskii [9] discussed about the possibility
of ferroelectricity related to charge disproportionation in rare
earth perovskite nickelates of the type RNiO3 (R¼rare earth). In
fact, in 2000 Mizokawa et al. [10] had studied a multiband d–p
model for perovskite transition metal oxides, suggesting that it
could describe those nickelate compounds, and found an anti-
ferromagnetic ground state with charge ordering centred either in
the O–2p orbitals, for relatively large charge-transfer energy (as in
PrNiO3 and NdNiO3), or with charge-ordering in the transition
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Fig. 1. (Reproduced from Ref. [19, Fig. 1].) Schematic view of the charge and magnetic structures of RNiO3 oxides. (a) Collinear up–up–down–down magnetic structure [6]
and (b) non-collinear magnetic structure [7].
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metal 3d orbitals, for negative charge transfer energies (relevant
for YNiO3).

These nickelates (R¼rare-earth, or Y) present a metal–insulator
transition [11–13] at temperature TMI, and antiferromagnetic or-
dering below the Néel temperature T TN MI( ≤ ) with a possible or-
dering of Ni 3 δ( − )+ and Ni 3 δ( + )+ ions [3–7,14–18], with various values
of the charge disproportionation δ as discussed below. As one
example, in NdNiO3 it was found that T T 200MI N= = K [6,11].

In 2009, Giovanettiet al. [19] showed by first principles calcu-
lations, that in nickelates simultaneous charge and magnetic or-
dering could be present, as well as a charge disproportionation of
the Ni ions, and electrical polarization would thus be induced. In
their work, they calculated the electrical polarizations obtained for
three of the magnetic phases previously proposed for nickelates,
along with a specific charge ordering of Ni2+ and Ni4+ ions corre-
sponding to a charge disproportionation of δ¼1. The magnitude
and direction of the electrical polarization induced would indicate
the underlying magnetic order in these oxides, at present still not
clear.

As shown in Fig. 1, the magnetic orderings which they studied
[19] are (i) the S-collinear phase first proposed by Garcia et al. [6] in
X-ray diffraction (XRD) and neutron diffraction (ND) experiments
for PrNiO3 and NdNiO3, and later by Fernández et al. [15] for
HoNiO3; (ii) the T-collinear phase proposed by Giovannetti [19];
and (iii) the N-non-collinear phase proposed by Scagnoli et al.
[7,20] for NdNiO3 based on soft X-ray resonant scattering at the
Ni-L2,3 and Nd-M edges.

The S-collinear phase (see Fig. 1) is characterized [19] by a
checkerboard charge order of Ni 3 δ( − )+ and Ni 3 δ( + )+ ions, corre-
sponding to spins S1 and S2 respectively, along with a magnetic
structure defined by the propagation vector k 1/2, 0, 1/2= ( ), not
seen in other perovskite oxides. This involves alternating ferro-
magnetic (FM) and antiferromagnetic (AF) couplings along the
three pseudocubic axes such that every Ni-spin is coupled FM with
three of its nearest neighbors (NN) and AF with the remaining
ones. Regarding the magnetic cell, this structure can be pictured as
formed by ab planes stacked in the c direction in the form
AþAþA�A� , where in A� all spins are inverted with respect to
Aþ . Notice that on each plane, there are FM zigzag chains along b,
which are coupled AF to each other. Experimentally, the direction
of the moments within each plane appears to be either along a [6],
or in the ac plane [14,15]. Notice that the T-collinear phase differs
from the S-phase in the stacking of the zig-zag chains between
adjacent planes: in the S-phase all zig-zag chains point in the same
direction, whereas in the T phase in alternate planes they point in
opposite directions [19]. The N-non-collinear phase has the same
charge order as both collinear phases considered [19]. However, its
magnetic structure corresponds to a spin spiral in which the spins
in FM planes perpendicular to the [101] direction appear rotated
around the [010]-axis between consecutive planes. Note that this
N-non-collinear phase is different from other non-collinear phases
proposed for nickelates: in Ref. [15], these planes are alternatively
FM and AF, while in Ref. [17] the FM ab planes are stacked and
rotated 76θ ≈ ° along [001]. Apart from these phases, recently a
canted antiferromagnetic spin arrangement was suggested on the
basis of magnetic susceptibility measurements [8].

A wide set of values has been reported for the charge dis-
proportionation δ found in different rare-earth nickelates, as we
describe next. For PrNiO3 and NdNiO3, the first studied com-
pounds, δ¼0 according to Refs. [4,6]. However, more recently δ∼
0.21 was reported for PrNiO3 [16], whereas for NdNiO3 a value of

δ∼ 0.29 was estimated in Ref. [5] while Ni 2.5 ′δ( ± )+ states with
0.16δ′ ∼ follow from Ref. [7]. For YNiO3 in Ref. [14] δ∼ 0.28 was

estimated, which coincides with the value in the study through
the whole series of R¼Y, Ho, Er, Tm, Yb, Lu in Ref. [3], where
δ¼0.28, 0.38, 0.32, 0.36, 0.33, 0.33, were respectively reported. For
HoNiO3, nevertheless, a larger value δ∼ 0.48 can be estimated from
the reported magnetic moments in Ref. [15]. For TmNiO3 and
YbNiO3, from isomeric shifts in Ref. [18], δ∼ 0.14 and 0.16 re-
spectively, were estimated, values which correspond to approxi-
mately half the indicated CD in Ref. [3]. For DyNiO3 in Ref. [17] δ∼
0.52 is found for the non-collinear phase which best agrees with
their experiments.

In the present work, as a first approach to the study of the
problem in nickelates, we study the magnetic excitations of a one-
dimensional (1D) chain, like the ones included in the collinear and
non-collinear phases analysed in Ref. [19]. We used the localized
spin model to be presented in the next section, where the
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possibility of charge disproportionation is included by considering
Ni-spins with eventually different magnitudes. Regarding mag-
netic couplings, in our model we include the minimal set required
to describe the collinear as well as the non-collinear phases pro-
posed, that is, FM nearest-neighbor (NN) and AF next-nearest-
neighbor (NNN) Heisenberg-like interactions, and to describe non-
collinear phases also a NN Dzyaloshinskii–Moriya-type (DM)
coupling [21,22], to allow for the possibility of a relative angle θ
between NN spins in different magnetic sublattices.

We analyse the stability of the collinear, orthogonal, and in-
termediate phases in the classical model. Then, we explore the
quantum ground state indirectly, by calculating the spin excita-
tions obtained for each phase, showing that for the collinear and
orthogonal (θ¼π/2) phases proposed, differences in the magnon
spectrums are to be expected, which would allow us to distinguish
between them in future experiments. To our knowledge, the only
inelastic neutron experiments yet performed in these compounds
correspond to the study of RNiO3 (R¼Pr, Nd, Sm, Eu and Pr Lax x1− )
by Rosenkranz et al. [23] who exclusively focused in the in-
vestigation of the crystal-field interaction at the R3þ sites.
2. Simplified chain model: generic intermediate phase

In order to describe the main ground state phases proposed for
nickelates mentioned in previous section, we study a simplified
chain model and propose a generic phase, which we call the “in-
termediate phase” which, as respective limiting cases, can describe
the collinear and the orthogonal phases. As a first approach, here
the three-dimensional nickelate compounds are studied using a
simplified model: representing them by chains of localized spins,
shown by dashed lines in Fig. 2a.

In the localized spin model we consider two kinds of Ni-spins
with different magnitudes in order to describe the charge dis-
proportionation. As shown in Fig. 2b, and to take into account the
phases proposed in experiments [6,7,14,15] along the chains we
consider a unit cell composed of four spins: two of them with
magnitude S1 representing the Ni 3 δ( − )+ sublattice, and two other
ones with magnitude S2 for Ni 3 δ( + )+, with δ being a measure of the
Ni charge disproportionation (CD). The main difference between
the experimentally proposed collinear and orthogonal phases is
the relative orientation between the two antiferromagnetic sub-
lattices, which we describe by angle θ characterizing the inter-
mediate phase, shown in Fig. 2b. Notice that the sign of θ will
determine the “helicity of the spin chain”. The collinear phase
[6,14,15,19] is characterized by θ¼0, while the orthogonal phase
[7,19] corresponds to θ¼π/2 and all chains have equal helicity. It is
F

A

K
Θ

S1 S

x

z

Fig. 2. (a) Schematic view of the charge and magnetic orderings under discussion for R
present study. The charge disproportionation Ni 3 δ( − )+ and Ni 3 δ( + )+ is represented, respec
one spin chain, i.e. a spin wave, with spins of alternate magnitude. Here the S1-sublattice
the former.
worth mentioning that in Ref. [15] a slightly different non-colli-
near phase is proposed: with 0.44θ π∼ , and anisotropic helicity
(along the z direction, alternating “helicity is proposed for con-
secutive chains”).

Regarding magnetic couplings, in our model we include FM
nearest-neighbor (NN) and AF next-nearest-neighbor (NNN) Hei-
senberg-like interactions, to describe the collinear phases. To de-
scribe non-collinear phases, the model also includes a NN Dzya-
loshinskii–Moriya-type (DM) coupling [21,22], like the one pre-
viously used in Ref. [24] to analyse the spin excitations in the
distorted NiO2 planes in La2NiO4, in order to allow for the possi-
bility of a relative angle θ between NN spins in the two different
magnetic sublattices. We found that the minimal model of loca-
lized spins which could describe the single chains present in the
two limiting phases experimentally proposed [6,7], as well as the
generic intermediate phase with other θ values as in Ref. [15],
requires the inclusion of those three magnetic couplings. In par-
ticular, if we picture the 4-spin unit cell as formed by two “dimers”
(plotted in different colours/linewidths in Fig. 2b), an “intra-di-
mer” ferromagnetic (FM) coupling G and a Dzyaloshinskii–Moriya
(DM) like coupling K are required, as well as a NNN anti-
ferromagnetic (AF) coupling A in each magnetic sublattice (see
Fig. 2b).

With the above considerations, we studied the following spin
chain Hamiltonian:

S S y S S S SG K A
1n m D

n m
n m D

n m
n m

n m
, / , / ,

∑ ∑ ∑= − · + ·( × ) + ·
( )〈 〉 ∈

′

〈 〉 ∈

′

〈〈 〉〉

where D indicates spins inside dimers, n m,〈 〉 or n m,〈〈 〉〉 indicate
nearest-neighbor (NN) or next-nearest-neighbor (NNN) spins, re-
spectively. Here, all couplings are considered positive, and the sign
of K determines the helicity of the spin chain: K 0> produces a
counterclockwise rotation like in Fig. 2b, while K 0< would induce
a clockwise rotation. The primes refer to the use of θ-rotated local
spin quantization axes for S2-spins, as detailed later.
3. Results and discussion

3.1. Phase stability in the classical model

As a first step, we analyse the classical behaviour of the spin
chain model of Eq. (1). The energy of the generic intermediate
phase characterized by angle θ, per unit cell, for the case of clas-
sical spins is obtained as
Θ

2 S1 S2

NiO3 oxides. With dashed lines we represent the spin chains present, object of our
tively, by large (gray) and small (black) circles. (b) Generic intermediate phase, for
is considered fixed, while the S2-sublatttice is rotated by an angle θ with respect to



Fig. 3. Analysis of stability of the different phases in the classical model. Parameters: A 1= ; S S 0.51 2= = . (a) Classical phase diagram including the /4θ π= intermediate
phase, the collinear phase ( 0θ = ) and the orthogonal ( /2θ π= ) phase. (b) Angular dependence of the slopes of phase boundaries m1 and m2 given by Eq. (3). (c) minθ as a
function of G, for K 0.3= (dashed line); minθ as a function of K , for G 0.3= (dotted line).

I.R. Buitrago, C.I. Ventura / Journal of Magnetism and Magnetic Materials 394 (2015) 148–154 151
E S S S S2 G cos K sin A 2I 1 2 1
2

2
2( ) ( )θ θ θ( ) = − + − + ( )

in terms of the magnetic coupling parameters G, K, and A.
Fig. 3a shows a phase diagram in (G, K) space, obtained by

comparing the classical energies of three phases: the collinear
( 0θ = ), the orthogonal ( /2θ π= ) and the /4θ π= intermediate
phases for A¼1 and equal spin magnitudes S S1 2= .

To explore the dependence on angle θ, one can also compare
analytically the energies given by Eq. (2) for a generic θ-angle
intermediate phase, with the energies of the collinear and the
orthogonal phases. The two boundaries for the three observed
regions in (G, K) space (like shown in Fig. 3a, for /4θ π= ) are found
to be given by linear functions, with respective θ-dependent
slopes as shown in Fig. 3b:

m m
1 cos

sin
,

cos
1 sin 31 2

θ
θ

θ
θ

= − =
− ( )

independent of the sublattice spin magnitudes. Thus, fixing the
angles of the phases included, the phase diagram in (G, K) space
would not be modified even if different spin values were used, as
Fig. 4. Classical energy of the collinear, orthogonal and minθ θ= intermediate phases as
S S 0.51 2= = .
the energies of the different phases are rescaled proportionally. In
Fig. 3b the angular dependence of m1 and m2 is exhibited.

From (2) one can also obtain the angle minθ which leads to the
intermediate phase with minimum classical energy, for any set of
coupling parameters:

⎛
⎝⎜

⎞
⎠⎟

dE
d

0 arctan
K
G

.
4

I
min

θ
θ

θ
( )

= ⇒ =
( )

Notice that minθ is independent of NNN coupling parameter A, and
only depends on the “intra-dimer” coupling ratio: K/G. In Fig. 3c
we plot minθ along specific lines in parameter space, marked in
Fig. 3a. We show the monotonously decreasing minθ as a function
of G, for K 0.3= and, as could be expected, confirm that for G 0=
the orthogonal phase /2θ π= represents the stable ground state.
The monotonous increase of minθ with K, for G 0.3= , is also shown,
and we here confirm that for K 0= the collinear phase 0θ = is
stable. Notice also, in Fig. 3c, that the /4θ π= intermediate phase
will only be stable when K G= .

Finally, in Fig. 4a and b the classical energies of the collinear
phase, the orthogonal phase and the minθ θ= intermediate phase
a function of coupling parameters G in (a), and K in (b) Other parameters: A 1= ;
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are plotted as functions of G and K. It becomes clear that, with our
simplified model, for each (G, K) set of parameters, one inter-
mediate phase (the one with minθ θ= ) is always the classically
stable ground state, merging with the proposed collinear and or-
thogonal phases in the appropriate limits.
3.2. Calculation of the quantum spin excitations

To calculate the quantum magnons of our chain model for
nickelates at low temperatures, given by Hamiltonian (1), we start
by performing a local rotation of the S2 sublattice spin quantiza-
tion axes by an angle θ, with respect to the S1 sublattice, using the

following transformation S Sn
y

n
y( = )′ :

S S S S S Scos sin , sin cos 5n
x

n
x z

n
z

n
x z

1 1θ θ θ θ= − = + ( )′ ′ ′ ′
Fig. 5. Magnons for RNiO3 nickelates obtained with our spin chain model for different pa
detailed in subcaptions. Unless otherwise stated: collinear phase with 0θ = (solid line);
lines). (a) Points of (G, K) space, where the predicted quantum magnons are shown nex
included. Unless otherwise stated: A 1= , S S 0.51 2= = . (b) Magnons obtained with intra-
phase ( 0 minθ θ= = ). Dashed line: orthogonal phase ( /2θ π= ). Dotted lines: collinear p
K 0.3= (▴ in (a)). Here, the intermediate phase that minimizes the classical energy corr
(a)). Here 45minθ = °. (e) Magnons corresponding to G 0.3= , K 0.5= (♦ in (a)). Here mθ
( /2 minθ π θ= = ): dashed lines: for S S 0.51 2= = ; dotted lines: for S1¼0.6 and S2¼0.4.
Next, with the Holstein–Primakoff transformation the Ha-
miltonian is rewritten in terms of bosonic operators, and the
Linear Spin Wave approximation (LSW) is used:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
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⎞
⎠
⎟⎟
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S
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S

b b S S b b

2
,

2
,

2
,

2
,

6
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x n
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y n
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z

n n n

n
x n

n n n
y n

n n n
z

n n n

= + = − = −

= + = − − = − +
( )

† † †

† † †

where (a a,† ) operators refer to the spin up sublattice, and (b b,† ) to
the spin down sublattice. Though the resulting Hamiltonian in-
cludes one, two and three operator terms, in LSW we consider
only those written in terms of two operators. One operator terms
change the energy of ground state. Introducing the Fourier trans-
form of the boson operators, we obtain the following Hamiltonian:
rameters. Inter-dimer AFM coupling A 1= ; spins: S S 0.51 2= = , other parameters as
orthogonal phase with /2θ π= (dashed lines); minθ -intermediate phase (dot-dashed
t. Colour-depth indicates the value of classical angle minθ , as indicated by the scale
dimer couplings: G 0.5= , K 0= (■ in (a)), for different phases. Solid line: collinear
hase ( 0 minθ θ= = ) for S1¼0.6 and S2¼0.4. (c) Magnons corresponding to G 0.5= ,
esponds to angle: 30.9minθ = °. (d) Magnons corresponding to G 0.5= , K 0.5= (⋆ in

59in = °. (f) Magnons corresponding to G 0= , K 0.5= (• in (a)). Orthogonal phase
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with the coefficients defined as S S S1 2( )= :

⎛
⎝⎜

⎞
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8
iqa

1,2 2,1 1,2

1,2 1,2

λ θ θ
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Finally, by paraunitary diagonalization of the Hamiltonian, we
determine the energies of the magnon excitations.

3.2.1. Magnon predictions for the different phases
In the following, we discuss the quantum magnons obtained

for Hamiltonian (7) using different pairs of (G, K) couplings, as
detailed in Fig. 5a. The AFM coupling between “dimers”, A 1= , was
considered as unit of energy, and except for Fig. 5b the spin
magnitudes were chosen as S S 0.51 2= = , which corresponds to

0δ = .
In all cases we obtained 16 eigenbands, corresponding to the

16� 16 Hamiltonian matrix of which only the 8 positive branches
describe magnon excitations.

First, notice that with the different pairs of (G, K) couplings
used, in Fig. 5b–f we are exhibiting the quantum magnons which
correspond to the intermediate phase with lowest classical energy
corresponding to angles minθ ranging from 0 to π/2.

Now, notice that the lowest magnon branch both in Fig. 5b and
f is identical to the spin excitation of an antiferromagnetic chain. In
Fig. 5f, the lowest branch corresponds to the collinear phase
( 0θ = ) with parameters G 0= , K 0.5= , hence in (8) the effect of K
on the magnons disappears, due to the sin θ factor. Thus, the only
non-vanishing coupling term in the Hamiltonian is determined by
A, hence the antiferromagnetic chain excitation is obtained. In
contrast, in Fig. 5b the lowest branch corresponds to the ortho-
gonal phase ( /2θ π= ) with parameters G 0.5= , K 0= . In this case,
in Eqs. (8) the effect of G does not disappear as K in the previous
one. Nevertheless we checked that the dispersion of an anti-
ferromagnetic chain results even when G → ∞. This can be un-
derstood because in this limit the system behaves as an anti-
ferromagnetic chain composed of dimers, each of them consisting
of two consecutive spins coupled by G.

As shown in Fig. 5b, the magnons obtained for the collinear
phase (solid line), which is the classically stable phase, are all
degenerate. We checked that these excitations correspond to spin–
flips between two NNN inter-dimer spins: i.e. in sites 1 and 3, or
2 and 4 with the notation of Fig. 2b. Both of these spin flips involve
the same energy cost related to coupling A, thus being degenerate.
As one would expect, we find that considering a certain degree of
charge disproportionation, i.e. S S1 2≠ in the model, some degen-
eracies are broken due to the lower symmetry of the system: we
exemplify this in Fig. 5b by including the case S1¼0.6, S2¼0.4
(δ¼0.2), plotted with dot-dashed lines. This effect is largest at the
Brillouin zone edge X.

Regarding the orthogonal phase, Fig. 5f shows its excitations for
G 0= and K 0.5= (• in Fig. 5a), case in which it corresponds to the
classical stable phase. Notice that turning on the K coupling also
reduces the symmetry of the system and, as previously mentioned,
breaks magnon degeneracies. Though the analysis of the obtained
excitation modes is more complex for this phase, the symmetry
breaking of the two highest magnon branches can be understood
as follows. The highest energy magnon branch (with energy ∼
0.5 at Γ, in Fig. 5f) involves spin–flip excitations between two NN
inter-dimer spins in sites 1 and 4, and in sites 2 and 3, involving an
energy cost related to A and K couplings. A lower energy cost is
payed exciting the magnon branch below it (with energy ∼ 0.4 at
Γ, in Fig. 5f), which we checked corresponds to spin excitations of
two NNN inter-dimer spins (i.e. between spins 1 and 3, and spins
2 and 4), in which case only the K coupling is affected.

It is also interesting to compare the effect of the charge dis-
proportionation in the two cases exhibited in Fig. 5b and f. While,
as discussed above, in the collinear phase of Fig. 5b degeneracies
are clearly split by δ, we observe that in the orthogonal phase
depicted in Fig. 5f no new degeneracy splittings appear, in addition
to those originated by the presence of the DM coupling K. In fact,
the main q-dependent effect produced by δ in the orthogonal
phase is to increase the size of the magnon gap between the upper
and lower pairs of branches originated by K. According to our re-
sults, the different numbers of magnon branches observed might
thus be used to distinguish between the collinear and orthogonal
phases, and even to quantify the charge disproportionation.

Also, Fig. 5b–f shows that in the parameter ranges considered
none of these phases becomes unstable, with all excitation en-
ergies being positive. Even though this does not allow us to in-
directly determine which of the studied phases would represent
the ground state of our chain, it is plausible to infer that the
quantum ground state should be similar to the intermediate phase
that minimizes the classical energy (i.e. I minθ : plotted with dot-
dashed lines in Fig. 5). This might be justified observing that, in
Fig. 5b–f, the minθ -intermediate phase has excitations with higher
energy than the other phases, thus it seems more difficult to create
excitations and eventually destabilize the minθ -intermediate phase.
4. Summary

A simplified localized spin chain model was proposed to study
the generic intermediate phase in nickelates, able to describe a
variable charge disproportionation and relative orientation of
consecutive spins along the chain.

The model includes the following magnetic couplings: nearest-
neighbor (NN) and next-nearest-neighbor (NNN) Heisenberg-like
interactions, respectively for the ferromagnetic and anti-
ferromagnetic couplings present in the collinear phases. To de-
scribe the non-collinear phases, we also consider a NN Dzya-
loshinskii–Moriya [21,22]-type coupling to allow for the possibility
of a relative angle between the different magnetic sublattices.

We studied (i) the classical stability of the collinear, orthogonal,
and intermediate phases, as possible ground states for these
compounds; and (ii) the quantum ground state indirectly, by cal-
culating the spin excitations resulting from each of those phases.

Our classical results show that for each set of NN (intra-dimer)
ferromagnetic and DM magnetic couplings, always an inter-
mediate phase characterized by an angle minθ , corresponds to the
most stable classical ground state. From the measurements of the
two Ni spin magnitudes by Fernandez et al. [15], in terms of our
model one can obtain the following estimation for the relative
orientation of consecutive spins along the chain, 80θ ∼ °, and in-
tra-dimer coupling ratio: K/G 6∼ .

Regarding the quantum magnetic excitations: with our sim-
plified model, we predict the spin excitations to be expected for
the collinear [6,15] and the orthogonal phases [7,19] so far
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proposed for these compounds, as well as those of the inter-
mediate phase. For the collinear and orthogonal (θ¼π/2) phases,
we predict differences in the magnon spectra which would allow
us to distinguish between them in future experiments, such as
inelastic neutron scattering or resonant inelastic X-ray scattering,
where magnon dispersion measurements are not yet available to
our knowledge. In particular, the number of magnon branches
would differ between these phases, and the charge dis-
proportionation present might also be quantified: either by the
number of branches in the collinear phase or by the size of the
magnon gap in the orthogonal phase.

Our present study represents a first step towards an under-
standing of the complex three-dimensional ground state of rare-
earth nickelates, to enable comparison with future measurements
of the magnon dispersion. Inelastic neutron scattering or resonant
inelastic X-ray scattering results would be especially desirable in
these compounds, since the available neutron diffraction data
could not discriminate between the different ground states pro-
posed. Material specific ingredients, as well as the different pos-
sibilities of three-dimensional stacking, should be considered in
future research work. Also, if no obvious signs of destabilization of
any of these phases are observed in the predicted magnons, a di-
rect study of the quantum phase diagram would be important.
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