14 research outputs found

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium-and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. Decision support tools AS-ISK Hazard identification Non-native species Risk analysis Climate changepublishedVersio

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a ‘very high risk’ of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate ‘rapid’ management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement.publishedVersio

    Land cover and land use change related to shrimp farming in coastal areas of Quang Ninh, Vietnam using remotely sensed data

    No full text
    Rapid development of shrimp farming may lead to unrecognized and undesirable changes of land cover/land use patterns in coastal areas. Of special concern is the loss of mangrove forest in coastal areas such as Quang Ninh, Vietnam, which is adjacent to the World Heritage-listed Ha Long Bay. Understanding the status and changes of land cover/land use for coastal shrimp farms and mangrove forests can support environmental protection and decision-making for sustainable development in coastal areas. Within this context, this paper uses the 1999/2001 Landsat ETM+ and the 2008 ALOS AVNIR-2 imagery to investigate the contraction and expansion of shrimp farms and mangrove forests in coastal areas of Ha Long and Mong Cai, which now have a high concentration of intensive and semi-intensive shrimp farms. Images were separately analyzed and classified before using post-classification comparisons to detect land cover/land use changes in the study area. The results of this study found that the area of mangrove forest has been reduced by an estimated 927.5 ha in Ha Long and 1,144.4 ha in Mong Cai, while shrimp farming areas increased by an estimated 1,195.9 and 1,702.5 ha, respectively, over the same period. The majority of shrimp farms in Mong Cai were established at the expense of mangrove forest (49.4 %) while shrimp farms in Ha Long were mainly constructed on areas previously occupied by bare ground (46.5 %) and a significant proportion also replaced mangroves (23.9 %). The remarkable rate of mangrove loss and shrimp farming expansion detected in this study, over a relatively short time scale indicate that greater awareness of environmental impacts of shrimp farm expansion is required if this industry is to be sustainable, the important estuarine and coastal marine ecosystems are to be protected over the long term, and the capturing and storing of carbon in mangrove systems are to be enhanced for global climate change mitigation and for use as carbon offsets

    Assessment and monitoring of nutrient loading in the sediments of tidal creeks receiving shrimp farm effluent in Quang Ninh, Vietnam

    No full text
    Coastal shrimp farming may lead to the contamination of sediments of surrounding estuarine and marine ecosystems as shrimp farm effluent often contains high levels of pollutants including a range of organic compounds (from uneaten feed, shrimp feces, and living and dead organisms) which can accumulate in the sediments of receiving waterways. The assessment and monitoring of sediment quality in tidal creeks receiving shrimp farm effluent can support environmental protection and decision making for sustainable development in coastal areas since sediment quality often shows essential information on long-term aquatic ecosystem health. Within this context, this paper investigates nutrient loadings in the sediments of tidal creeks receiving shrimp farm effluent in Quang Ninh, Vietnam, which now have a high concentration of intensive and semi-intensive shrimp farms. Sediment samples taken from inside creek sections directly receiving effluent from concentrated shrimp farms (IEC), from main creeks adjacent to points of effluent discharge outside concentrated shrimp farms (OEC), and few kilometers away from shrimp farms (ASF) as reference sites were collected and analyzed before and after shrimp crops to investigate spatial and temporal variation. The results showed that there were statistically significant differences in the concentrations of total nitrogen, total phosphorus, and total organic carbon among IEC, OEC, and ASF sites while the seasonal variation being limited over study times. A sediment nutrient index (SNI) computed from coefficient scores of the factor analysis efficiently summarizes sediment nutrient loads, which are high, albeit quite variable, in canals directly receiving effluents from farms but then decline sharply with distance from shrimp farms. The visualization and monitoring of sediment quality data including SNI on maps can strongly support managers to manage eutrophication at concentrated shrimp farming areas, contributing to sustainable development and management at coastal zones

    Speaking their language – Development of a multilingual decision-support tool for communicating invasive species risks to decision makers and stakeholdersolders

    No full text
    Environmental changes due to non-native species introductions and translocations are a global concern. Whilst understanding the causes of bioinvasions is important, there is need for decision-support tools that facilitate effective communication of the potential risks of invasive non-native species to stakeholders. Decision-support tools have been developed mostly in English language only, which increases linguistic uncertainty associated with risk assessments undertaken by assessors not of English mother tongue and who need to communicate outcomes to local stakeholders. To reduce language-based uncertainty, the ‘ecology-of-language’ paradigm was applied when developing the Aquatic Species Invasiveness Screening Kit (AS-ISK), a decision-support tool that offers 32 languages in which to carry out screenings and communicate outcomes to stakeholders. Topics discussed include uncertainty related to language-specific issues encountered during the AS-ISK translation and the potential benefits of a multilingual decision-support tool for reducing linguistic uncertainty and enhancing communication between scientists, environmental managers, and policy and decision makers

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    No full text
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a ‘very high risk’ of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate ‘rapid’ management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    No full text
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium-and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. Decision support tools AS-ISK Hazard identification Non-native species Risk analysis Climate chang

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    No full text
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium-and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. Decision support tools AS-ISK Hazard identification Non-native species Risk analysis Climate chang

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    No full text
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium-and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. Decision support tools AS-ISK Hazard identification Non-native species Risk analysis Climate chang
    corecore