31 research outputs found

    Small-Molecule Inhibitors of USP1 Target ID1 Degradation in Leukemic Cells

    Get PDF
    Inhibitor of DNA binding 1 (ID1) transcription factor is essential for the proliferation and progression of many cancer types, including leukemia. However, the ID1 protein has not yet been therapeutically targeted in leukemia. ID1 is normally polyubiquitinated and degraded by the proteasome. Recently, it has been shown that USP1, a ubiquitin-specific protease, deubiquitinates ID1 and rescues it from proteasome degradation. Inhibition of USP1 therefore offers a new avenue to target ID1 in cancer. Here, using a ubiquitin-rhodamine–based high-throughput screening, we identified small-molecule inhibitors of USP1 and investigated their therapeutic potential for leukemia. These inhibitors blocked the deubiquitinating enzyme activity of USP1 in vitro in a dose-dependent manner with an IC50 in the high nanomolar range. USP1 inhibitors promoted the degradation of ID1 and, concurrently, inhibited the growth of leukemic cell lines in a dose-dependent manner. A known USP1 inhibitor, pimozide, also promoted ID1 degradation and inhibited growth of leukemic cells. In addition, the growth of primary acute myelogenous leukemia (AML) patient-derived leukemic cells was inhibited by a USP1 inhibitor. Collectively, these results indicate that the novel small-molecule inhibitors of USP1 promote ID1 degradation and are cytotoxic to leukemic cells. The identification of USP1 inhibitors therefore opens up a new approach for leukemia therapy. Mol Cancer Ther; 12(12); 2651–62. ©2013 AACR

    Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism

    Get PDF
    Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific protein substrates in order to alter their degradation rate and sub-cellular localization. USP7 has been proposed as a therapeutic target in several cancers because it has many reported substrates with a role in cancer progression, including FOXO4, MDM2, N-Myc, and PTEN. The multisubstrate nature of USP7, combined with the modest potency and selectivity of early generation USP7 inhibitors, has presented a challenge in defining predictors of response to USP7 and potential patient populations that would benefit most from USP7-targeted drugs. Here, we describe the structureguided development of XL177A, which irreversibly inhibits USP7 with sub-nM potency and selectivity across the human proteome. Evaluation of the cellular effects of XL177A reveals that selective USP7 inhibition suppresses cancer cell growth predominantly through a p53-dependent mechanism: XL177A specifically upregulates p53 transcriptional targets transcriptome-wide, hotspot mutations in TP53 but not any other genes predict response to XL177A across a panel of similar to 500 cancer cell lines, and TP53 knockout rescues XL177A-mediated growth suppression of TP53 wild-type (WT) cells. Together, these findings suggest TP53 mutational status as a biomarker for response to USP7 inhibition. We find that Ewing sarcoma and malignant rhabdoid tumor (MRT), two pediatric cancers that are sensitive to other p53-dependent cytotoxic drugs, also display increased sensitivity to XL177A

    Leucine-rich repeat kinase 2 inhibitors: a patent review (2006-2011)

    No full text
    NIH [P41 GM079575-03]; Michael J Fox foundation for Parkinson's disease research; Fundamental Research Funds for the Central Universities of China [2011121030]; 111 Project of Education of China [B06016]Introduction: Leucine-rich repeat kinase 2 (LRRK2) has received considerable attention since the discovery of LRRK2 mutations in families with dominantly inherited Parkinson's disease (PD) in 2004. The missense mutation G2019S is the most common LRRK2 mutation and has been identified in both familial and sporadic PD cases. The G2019S mutation enhances kinase activity suggesting that LRRK2 could be an attractive therapeutic target for PD and small-molecule ATP-competitive LRRK2 kinase inhibitors are one way to investigate this possibility. Areas covered: Currently, LRRK2 kinase inhibitors are being actively pursued by industry and academia. Herein, patents detailing the discovery of LRRK2 kinase inhibitors from 2006 through 2011 and the corresponding publications from 2006 through July of 2012 are summarized. Expert opinion: Wild-type and mutant forms of LRRK2 are currently being actively pursued as therapeutic targets for the potential treatment of PD. The increasing number of patent applications being filed for inhibitors of LRRK2 is a testament to this activity. Numerous distinct chemo-types have been reported as LRRK2 inhibitors with some demonstrating exceptional potency and selectivity for LRRK2 relative to other kinases. These compounds are being used as pharmacological 'tools' to elucidate the physiological and pathophysiological function of LRRK2 and it appears likely that some will be investigated for their potential therapeutic effects for the treatment of PD

    Leveraging Gas-Phase Fragmentation Pathways for Improved Identification and Selective Detection of Targets Modified by Covalent Probes

    No full text
    The recent approval of covalent inhibitors for multiple clinical indications has reignited enthusiasm for this class of drugs. As interest in covalent drugs has increased, so too has the need for analytical platforms that can leverage their mechanism-of-action to characterize modified protein targets. Here we describe novel gas phase dissociation pathways which yield predictable fragment ions during MS/MS of inhibitor-modified peptides. We find that these dissociation pathways are common to numerous cysteine-directed probes as well as the covalent drugs, Ibrutinib and Neratinib. We leverage the predictable nature of these fragment ions to improve the confidence of peptide sequence assignment in proteomic analyses and explore their potential use in selective mass spectrometry-based assays

    Characterization of WZ4003 and HTH-01-015 as selective inhibitors of the LKB1-tumour-suppressor-activated NUAK kinases

    Get PDF
    The related NUAK1 and NUAK2 are members of the AMPK (AMP-activated protein kinase) family of protein kinases that are activated by the LKB1 (liver kinase B1) tumour suppressor kinase. Recent work suggests they play important roles in regulating key biological processes including Myc-driven tumorigenesis, senescence, cell adhesion and neuronal polarity. In the present paper we describe the first highly specific protein kinase inhibitors of NUAK kinases namely WZ4003 and HTH-01-015. WZ4003 inhibits both NUAK isoforms (IC50 for NUAK1 is 20 nM and for NUAK2 is 100 nM), whereas HTH-01-015 inhibits only NUAK1 (IC50 is 100 nM). These compounds display extreme selectivity and do not significantly inhibit the activity of 139 other kinases that were tested including ten AMPK family members. In all cell lines tested, WZ4003 and HTH-01-015 inhibit the phosphorylation of the only well-characterized substrate, MYPT1 (myosin phosphate-targeting subunit 1) that is phosphorylated by NUAK1 at Ser445. We also identify a mutation (A195T) that does not affect basal NUAK1 activity, but renders it ~50-fold resistant to both WZ4003 and HTH-01-015. Consistent with NUAK1 mediating the phosphorylation of MYPT1 we find that in cells overexpressing drug-resistant NUAK1[A195T], but not wild-type NUAK1, phosphorylation of MYPT1 at Ser445 is no longer suppressed by WZ4003 or HTH-01-015. We also demonstrate that administration of WZ4003 and HTH-01-015 to MEFs (mouse embryonic fibroblasts) significantly inhibits migration in a wound-healing assay to a similar extent as NUAK1-knockout. WZ4003 and HTH-01-015 also inhibit proliferation of MEFs to the same extent as NUAK1 knockout and U2OS cells to the same extent as NUAK1 shRNA knockdown. We find that WZ4003 and HTH-01-015 impaired the invasive potential of U2OS cells in a 3D cell invasion assay to the same extent as NUAK1 knockdown. The results of the present study indicate that WZ4003 and HTH-01-015 will serve as useful chemical probes to delineate the biological roles of the NUAK kinases

    Inhibiting Fungal Multidrug Resistance by Disrupting an Activator-Mediator Interaction

    Get PDF
    Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a transcription factor-binding site in Mediator as a novel therapeutic strategy in fungal infectious disease
    corecore