99 research outputs found
Relativistic Poynting Jets from Accretion Disks
A model is developed for relativistic Poynting jets from the inner region of
a disk around a rotating black hole. The disk is initially threaded by a
dipole-like magnetic field. The model is derived from the special relativistic
equation for a force-free electromagnetic field. The ``head'' of the Poynting
jet is found to propagate outward with a velocity which may be relativistic.
The Lorentz factor of the head (Gamma) is found to be dependent on the magnetic
field strength close to the black hole, B_0, the density of the external medium
n_ext, and on the ratio R=r_0/r_g >1, where r_g is the gravitational radius of
the black hole, and r_0 is the radius of the O-point of the initial dipole
field threading the disk. For conditions pertinent to an active galactic
nuclei, Gamma is approximately equal to 8 (10/R)^(1/3) (B_0/10^3 Gauss)^(1/3)
(1/cm^3/n_ext)^(1/6). This model offers an explanation for the observed Lorentz
factors which are of the order of 10 for the parsec-scale radio jets measured
with very long baseline interferometry.Comment: 4 pages, 1 figur
The Stability of Radiatively Cooled Jets in Three Dimensions
The effect of optically thin radiative cooling on the Kelvin-Helmholtz
instability of three dimensional jets is investigated via linear stability
theory and nonlinear hydrodynamical simulation. Two different cooling functions
are considered: radiative cooling is found to have a significant effect on the
stability of the jet in each case. The wavelengths and growth rates of unstable
modes in the numerical simulations are found to be in good agreement with
theoretical predictions. Disruption of the jet is found to be sensitive to the
precessional frequency at the origin with lower frequencies leading to more
rapid disruption. Strong nonlinear effects are observed as the result of the
large number of normal modes in three dimensions which provide rich mode-mode
interactions. These mode-mode interactions provide new mechanisms for the
formation of knots in the flows. Significant structural features found in the
numerical simulations appear similar to structures observed on protostellar
jets.Comment: 32 pages, 13 figures, figures included in page tota
Influence of magnetic fields on pulsed, radiative jets
We present results of magnetohydrodynamic simulations of steady and time variable jets for a set of conditions applicable to outflows from young stellar objects (YSOs). As a first step in a detailed study of radiative magnetohydrodynamic jets, we study both steady and pulsed jets with a large-scale magnetic field oriented parallel to the jet flow axis. While toroidal components may be present in many jets, we have chosen in this initial study to focus solely on pure poloidal initial geometries. The range of magnetic field strengths studied is characterized by the dimensionless parameter beta = 8 pi P-gas/B-2 = 0.1-10(7). The results of our simulations show that the global characteristics are not strongly dependent on the strength of the magnetic field. Instead, we find that a predominantly poloidal field has more subtle effects, such as inhibiting instabilities, and increasing the "order" in the flow patterns. While the fields act to restrict "turbulent" gas motions, the pulse-induced internal shocks increase the likelihood of instabilities, complicate the global flow patterns, and increase the likelihood of magnetic reconnection. We detail the ways in which the magnetic pressure and tension forces affect the kinematics observed in these simulationsopen242
A 3-mode, Variable Velocity Jet Model for HH 34
Variable ejection velocity jet models can qualitatively explain the
appearance of successive working surfaces in Herbig-Haro (HH) jets. This paper
presents an attempt to explore which features of the HH-34 jet can indeed be
reproduced by such a model. From previously published data on this object, we
find evidence for the existence of a 3-mode ejection velocity variability, and
then explore the implications of such a variability. From simple, analytic
considerations it is possible to show that the longer period modes produce a
modulation on the shorter period modes, resulting in the formation of
``trains'' of multiple knots. The knots observed close to the source of HH-34
could correspond to such a structure. Finally, a numerical simulation with the
ejection velocity variability deduced from the HH-34 data is computed. This
numerical simulation shows a quite remarkable resemblance with the observed
properties of the HH-34 jet.Comment: 28 pages LaTex, 10 postscript figure
Computer aided synthesis: a game theoretic approach
In this invited contribution, we propose a comprehensive introduction to game
theory applied in computer aided synthesis. In this context, we give some
classical results on two-player zero-sum games and then on multi-player non
zero-sum games. The simple case of one-player games is strongly related to
automata theory on infinite words. All along the article, we focus on general
approaches to solve the studied problems, and we provide several illustrative
examples as well as intuitions on the proofs.Comment: Invitation contribution for conference "Developments in Language
Theory" (DLT 2017
Distribution Analysis of Hydrogenases in Surface Waters of Marine and Freshwater Environments
Background
Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation.
Principal Findings
We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean.
Significance
This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles
Cardiac-Oxidized Antigens Are Targets of Immune Recognition by Antibodies and Potential Molecular Determinants in Chagas Disease Pathogenesis
Trypanosoma cruzi elicits reactive oxygen species (ROS) of inflammatory and mitochondrial origin in infected hosts. In this study, we examined ROS-induced oxidative modifications in the heart and determined whether the resultant oxidized cardiac proteins are targets of immune response and of pathological significance in Chagas disease. Heart biopsies from chagasic mice, rats and human patients exhibited, when compared to those from normal controls, a substantial increase in protein 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), carbonyl, and 3-nitrotyrosine (3-NT) adducts. To evaluate whether oxidized proteins gain antigenic properties, heart homogenates or isolated cardiomyocytes were oxidized in vitro and one- or two-dimensional gel electrophoresis (2D-GE)/Western blotting (WB) was performed to investigate the proteomic oxidative changes and recognition of oxidized proteins by sera antibodies in chagasic rodents (mice, rats) and human patients. Human cardiomyocytes exhibited LD50 sensitivity to 30 µM 4-HNE and 100 µM H2O2 at 6 h and 12 h, respectively. In vitro oxidation with 4-HNE or H2O2 resulted in a substantial increase in 4-HNE- and carbonyl-modified proteins that correlated with increased recognition of cardiac (cardiomyocytes) proteins by sera antibodies of chagasic rodents and human patients. 2D-GE/Western blotting followed by MALDI-TOF-MS/MS analysis to identify cardiac proteins that were oxidized and recognized by human chagasic sera yielded 82 unique proteins. We validated the 2D-GE results by enzyme-linked immunosorbent assay (ELISA) and WB and demonstrated that oxidation of recombinant titin enhanced its immunogenicity and recognition by sera antibodies from chagasic hosts (rats and humans). Treatment of infected rats with phenyl-α-tert-butyl nitrone (PBN, antioxidant) resulted in normalized immune detection of cardiac proteins associated with control of cardiac pathology and preservation of heart contractile function in chagasic rats. We conclude that ROS-induced, cardiac-oxidized antigens are targets of immune recognition by antibodies and molecular determinants for pathogenesis during Chagas disease
Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: the Ni-SIr state and its light sensitivity
The [NiFe] hydrogenase from the sulphate-reducing bacterium Desulfovibrio vulgaris Miyazaki F is reversibly inhibited in the presence of molecular oxygen. A key intermediate in the reactivation process, Ni-SIr, provides the link between fully oxidized (Ni-A, Ni-B) and active (Ni-SIa, Ni-C and Ni-R) forms of hydrogenase. In this work Ni-SIr was found to be light-sensitive (T ≤ 110 K), similar to the active Ni-C and the CO-inhibited states. Transition to the final photoproduct state (Ni-SL) was shown to involve an additional transient light-induced state (Ni-SI1961). Rapid scan kinetic infrared measurements provided activation energies for the transition from Ni-SL to Ni-SIr in protonated as well as in deuterated samples. The inhibitor CO was found not to react with the active site of the Ni-SL state. The wavelength dependence of the Ni-SIr photoconversion was examined in the range between 410 and 680 nm. Light-induced effects were associated with a nickel-centred electronic transition, possibly involving a change in the spin state of nickel (Ni2+). In addition, at T ≤ 40 K the CN− stretching vibrations of Ni-SL were found to be dependent on the colour of the monochromatic light used to irradiate the species, suggesting a change in the interaction of the hydrogen-bonding network of the surrounding amino acids. A possible mechanism for the photochemical process, involving displacement of the oxygen-based ligand, is discussed
- …