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INFLUENCE OF MAGNETIC FIELDS ON PULSED, RADIATIVE JETS
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ABSTRACT
We present results of magnetohydrodynamic simulations of steady and time variable jets for a set of

conditions applicable to outÑows from young stellar objects (YSOs). As a Ðrst step in a detailed study of
radiative magnetohydrodynamic jets, we study both steady and pulsed jets with a large-scale magnetic
Ðeld oriented parallel to the jet Ñow axis. While toroidal components may be present in many jets, we
have chosen in this initial study to focus solely on pure poloidal initial geometries. The range of mag-
netic Ðeld strengths studied is characterized by the dimensionless parameter b \ 8nPgas/B2\ 0.1È107.
The results of our simulations show that the global characteristics are not strongly dependent on the
strength of the magnetic Ðeld. Instead, we Ðnd that a predominantly poloidal Ðeld has more subtle
e†ects, such as inhibiting instabilities, and increasing the ““ order ÏÏ in the Ñow patterns. While the Ðelds
act to restrict ““ turbulent ÏÏ gas motions, the pulse-induced internal shocks increase the likelihood of
instabilities, complicate the global Ñow patterns, and increase the likelihood of magnetic reconnection.
We detail the ways in which the magnetic pressure and tension forces a†ect the kinematics observed in
these simulations.
Subject headings : hydrodynamics È ISM: jets and outÑows È MHD È shock waves È

stars : magnetic Ðelds È stars : preÈmain-sequence

1. INTRODUCTION

After more than 30 years of study, a coherent, well-tested
paradigm for HH objects has emerged. The emission in
these bright knots, observed principally in visible forbidden
and permitted lines, is known to result from recombination
of shock-excited gas (as originally suggested by Schwartz
1975). The knots are often embedded in fainter, more
extended jets. Typically, these stellar jets comprise a well-
organized and well-collimated linear beam (with
interruptions) extending from very small, less than 10 AU,
to very large, sometimes parsec-length, scales (Reipurth,
Bally, & Devine 1997). In some cases the HH objects and
their parent jet appear as part of a larger outÑow system,
which may include a molecular outÑow. In spite of the
concord regarding the physical nature of HH objects, a
consensus has not yet emerged about the exact nature of
their origin or the information they convey about the star
formation process.

Taken together, the ubiquity of HH objects, jets, and
molecular outÑows comprises one of the central challenges
to the theory of star formation. Are these phenomena a
pivotal means of regulating star formation, or are they
merely a by-product of accretion? Because of limitations
inherent in large distance, small size, and obscuration, most
protostars (the central engines of the outÑows) cannot
usually be imaged directly. Given the long ““ look-back ÏÏ or
dynamical times yr, the outÑowst

d
\ L jet/VjetB 103È105

may be one of the best means for recovering some sense of
the history of star formation processes. Thus, understand-
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ing how each component of an outÑow system arises and
what it tells us about the basic physics and history of star
formation remains a critical task. It is hoped that explica-
tion of the processes involved in the formation of HH
objects, stellar jets, and molecular outÑows will lead to an
improved understanding of star formation physics, includ-
ing star disk interactions, angular momentum losses and the
mechanisms that conspire to determine the ultimate mass of
a star.

Although a consensus has yet to emerge, the speciÐc
origin of HH objects is a question for which both theory
and observation appear to be converging toward a unique
answer. Currently two main classes of model exist, both of
which interpret the HH objects as shock-bounded knots
inside a collimated hypersonic jet beam. The Ðrst class of
model Mundt, & Ray 1988) suggests that the(Bu� hrke,
knotty appearance of young stellar object (YSO) jets is
caused by Kelvin-Helmholtz (KH) pinch-mode instabilities.
This could be generalized to suggesting that the source of
the knotty appearance of YSO jets is due to an instability
induced in the Ñow during the jet propagation. The excita-
tion of pinch-mode KH instabilities (Micono et al. 1998)
and nonaxisymmetric KH modes (Stone, Xu, & Hardee
1997) have been studied both analytically and numerically.
KH pinch-mode instabilities typically lead to a periodicity
too rapid to match observations. Nonaxisymmetric KH
modes do, however, appear to be a viable option for
describing the gentle wandering or wiggling of the jet beam.
The second class of models for HH objects (Rees 1978 ;
Reipurth 1989) posits that the driving sources of YSO jets
may be episodic or transient, changing on timescales much
less than the dynamical timescale of HH objects. This has
subsequently been referred to as an intrinsic variability, or
instability, in the driving source. The resulting velocity
variations lead to shock formation and knotty emission
characteristics through nonlinear wave steepening. Rei-
purth based this conjecture on, among other things, the
observation that some of the central stars associated with
jets have been observed to su†er signiÐcant changes in
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brightnessÈthe so-called FU Orionis outbursts. Recently,
the conjecture of intrinsic variability has received support-
ing evidence in the observations of HH 212 (Zinnecker,
McCaughrean, & Rayner 1998). It is argued by Zinnecker et
al. that the high degree of inversion symmetry observed in
this jet is compelling evidence favoring intrinsic variability
in the source of YSO outÑows. The e†ects of jet variation or
pulsation on a purely hydrodynamic jet has been studied by
a number of authors (Raga et al. 1990 ; Raga & Kofman
1992 ; Stone & Norman 1993 ; de Gouveia Dal Pino & Benz
1994 ; Smith, Suttner, & Zinnecker 1997). These studies
have found a good deal of agreement between theory and
observations, lending additional support to the conjecture
of jet source variability.

While much work has been done on the propagation of
hydrodynamic jets, comparatively little work has been done
on jets with dynamically important magnetic Ðelds. This
observation is in stark contrast to the general consensus in
the astrophysics community that magnetic Ðelds are pri-
marily responsible for launching and collimation of YSO
jets. The most popular magnetohydrodynamic (MHD)
models rely on a combination of magnetocentrifugal forces
in either an accretion disk (““ disk winds ÏÏ : Blandford &
Payne 1982 ; 1989 ; Ouyed & Pudritz 1997) or atKo� nigl
the disk-star boundary (““ X-winds ÏÏ : Shu 1997). With regard
to hydrodynamic jets, many studies have been done on col-
limation & 1980 ; Frank & Mellema(Canto� Rodr•� guez
1996 ; Delamarter, Frank, & Hartmann 2000), instabilities,
and source variability as mentioned earlier. Thus the hydro-
dynamic behavior of jets is generally well understood.
MHD collimation models have also been quite successful in
articulating the physical properties of the launching
process. Indeed, numerical simulations (Ouyed & Pudritz
1997 ; Romanova et al. 1998 ; Kudoh, Matsumoto, &
Shibata 1998), have recently demonstrated the ability of
disk-wind models to produce both steady and time-
dependent jets. Thus hydrodynamic and magnetohydro-
dynamic collimation models have been well studied, as have
hydrodynamic jet propagation models. What remain to be
done are detailed numerical models of radiative MHD
(RMHD) jets. To date only a few studies of RMHD jets
(Frank et al. 1998 ; Cerqueira, de Gouveia Dal Pino, &
Herant 1997) have been carried out.

While the direct observation of magnetic Ðelds in jets is
difficult, there is evidence that such Ðelds exist, at least close
to the star. Based on polarization measurements, Ray et al.
(1997) claim to observe magnetic Ðelds of order 1 G in an
outÑow of order 10 AU from T Tauri S. For typical jet
parameters such a Ðeld strength would give a plasma b \

of b B 10~11 to 10~7. These values are so small8nPgas/B2
that if they reÑect global values in the jet, one could not
really consider the system to be hydrodynamic at all. The
plasma would be forced to follow the motion of the mag-
netic Ðeld lines as the magnetic Ðeld attempted to arrange
itself into a force-free conÐguration. The authors conclude
that the high values of B must come from regions of strong
Ðeld ampliÐcation, such as behind shocks. One might rea-
sonably ask, ““ If Ðelds exist in the jets close to the source,
then will they exist at larger distances? ÏÏ As Frank et al.
(1999) have recently shown, the ambipolar di†usion time-
scale for YSO jets can be estimated as

qadB 28,904
A n

n
103 cm~3

BA R
j

1015 cm
B2A104 K

T
j

BA b
b ] 1

B
yr ,

where is the neutral particle density, is the jet radius,n
n

R
jand is the jet temperature. For jet parameters in theT

jmiddle of the expected range of variation we Ðnd ofqadorder 104È105 yr. Therefore, while we expect that ambipolar
di†usion may play a signiÐcant role in the long-term evolu-
tion of YSO jets, we can safely neglect its e†ects for the
much shorter timescales of interest in this investigation.
Given the importance of magnetic Ðelds for jet launching
and collimation, one would expect that hydromagnetic
forces play a signiÐcant role in the propagation of YSO jets
as well. Thus it is necessary to revisit all issues relevant to
YSO jet propagation anew in light of the e†ects of magnetic
Ðelds.

In this paper we present the Ðrst study of pulsed, radi-
ative, MHD jets. The numerical methods used to obtain
these results are highlighted in ° 2. The initial conditions,
detailed in ° 3, are chosen simple to facilitate a ““ clean ÏÏ
numerical study, e.g., we consider a pure Ðeld embeddedB

zin both the jet and the ambient medium. Our goal here is to
explicate if and how the dynamics of pulsed jets can change
with the inclusion of magnetic Ðelds and to determine
whether the Ðelds can provide new routes for channeling
kinetic energy into thermal energy. In particular, Frank et
al. (1997, 1998) pointed out that magnetic Ðelds within the
material dragged into the cocoon of a MHD jet would
likely reconnect at some point. The high-resolution simula-
tions presented in ° 4 allow us to study this issue in some
detail. We discuss these results in terms of previous models
and observations in ° 5 and summarize and draw conclu-
sions in ° 6.

2. NUMERICAL METHOD

We will present results obtained by numerically inte-
grating the equations of ideal MHD, modiÐed to include
cooling due to optically thin radiative losses. The simula-
tions are carried out in cylindrical coordinates (r, /, z) with
cylindrical symmetry and inversion symmetry across the
z\ 0 plane. Thus, the simulations follow a quarter-
meridional plane (r º 0, /\ 0, zº 0). Symmetry dictates
the use of reÑecting boundary conditions at the z\ 0 plane
and at the r \ 0 line. We utilize outÑow boundary condi-
tions at the outermost radial and z boundaries. During the
tests which we have run we have found little evidence of
incorrect reÑections from the r \ 0 line due to the coordi-
nate singularity, although it must be admitted that this
problem plagues all numerical codes in cylindrical coordi-
nates to some extent. The modiÐed equations of MHD take
the following form:
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where the total energy and pressure are assumed to be well
represented as an ideal gas, giving
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In addition to the hyperbolic equations presented above, an
additional constraint is imposed via the condition of Ñux
conservation,
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The unit for the magnetic Ðeld in these equations is chosen
for numerical purposes to be Equations (1) and (8)(G/J4n).
describe conservation of mass and energy, respectively. The
energy conservation equation includes a source term,

(where and represent the electron and ionn
e
n
i
"(T ), n

e
n
inumber density), which models radiative losses in the opti-

cally thin limit. For "(T ) we use the Dalgarno-McCray
““ coronal ÏÏ cooling curve (Dalgarno & McCray 1972) for
the interstellar medium in a tabulated form. As we do not
follow the ionization fraction directly in this work, we
assume the gas to consist of fully ionized hydrogen (n

e
\ n

i
)

and shut o† the radiative cooling below 104 K. Consistent
with this assumption, we take the ratio of speciÐc heats,
c\ 5/3. Equations (2)È(4) represent conservation of
momentum. Equations (5)È(7) are three components of the
induction equation.

SpeciÐcally, the method we use to solve equations (1)È(8)
is explicit, Ðnite-volume, up-winded, conservative, second-
orderÈaccurate, and total variation diminishing (TVD). The
code is conservative up to machine accuracy, ensuring that
it will accurately capture shock strengths and speeds.
Energy conservation ensures that the magnetic Ðeld energy
lost during magnetic reconnection will be dissipated,
modifying the thermal and kinetic energy. Magnetic recon-
nection only occurs in the simulations in regions of large
current density. Thus it emulates reality when small, but
Ðnite, resistivity is present in a plasma. In this way, the code
can be said to have a small but Ðnite dissipation term built

into the integration scheme, which may give some insight
into the processes and consequences of magnetic reconnec-
tion. Various manifestations of the code have been reported
in the literature in its one-dimensional Cartesian form (Ryu
& Jones 1995), its two-dimensional Cartesian form (Ryu,
Jones, & Frank 1995a), and its two-dimensional axisym-
metric (cylindrical coordinates) form (Ryu, Yun, & Choe
1995b). The TVD property is ensured in the same way as
was done originally by Harten for the Euler equations
(Harten 1983). In the two-dimensional versions of the code,
multidimensionality is handled through the use of Strang
splitting (Strang 1968). The cooling is applied in a Ðrst-
order fashion, as we have found minimal e†ects by incorp-
orating the cooling with more expensive second-order
accuracy. Finally, the crucial and problematic issue of
maintaining $ Æ B \ 0 is accomplished with a staggered-
grid approach (Ryu et al. 1998). For more details the reader
is directed to one of the above references, or for a general
review of methods currently in use for integrating hyper-
bolic conservation laws, such as the Euler equations or ideal
MHD equations see LeVeque (1992, 1997).

A note with regard to reconnection : the code used for
these studies nominally treats the Ñows as ““ ideal,ÏÏ or non-
dissipative. Dissipation does take place through numerical
truncation and di†usion at the grid-cell level, i.e., primarily
within the smallest resolved structures. The consistency of
this approach with nonideal hydro Ñows of high Reynolds
number has been convincingly demonstrated using turbu-
lence simulations for conservative methods analogous to
those employed here (e.g., Porter & Woodward 1994).
While that comparison has not yet been accomplished for
MHD Ñows, there are a number of results that support
consistency for ideal MHD codes when the dissipation
scales are small, as well. These include the apparent
““ convergence ÏÏ in general Ñow and magnetic Ðeld patterns
(as noted above) and global energy evolution seen in our
own simulations mentioned above, as well as MHD turbu-
lence studies (e.g., Mac Low et al. 1998 ; Stone, Ostriker, &
Gammie 1998). Reconnection occurs through magnetic dis-
sipation. We observe reconnection in our simulations, and
while the speciÐc mode of reconnection occurring is difficult
to determine, it does occur when we would expect it (Ðeld
reversals), in the manner expected (strong current sheets)
and with the consequences expected (rapid conversion of
magnetic to thermal energy).

3. SIMULATION PARAMETERS

The simulations follow a quarter-meridional plane (r º 0,
/\ 0, zº 0) with 300 grid cells, 2.5] 1016 cm, in the radial
direction and 1800 grid cells, 1.5 ] 1017 cm, in the z-
direction. The initial ambient medium will remain
unchanged throughout the suite of simulations presented
with a proton number density of cm~3 and tem-n

a
\ 60

perature K. The subscript a, and similarly j, will beT
a
\ 104

used to denote a property of the ambient and jet gas, respec-
tively. Additionally, the ambient gas will be initialized at
rest. The initial gas pressure in the jet is chosen such that

To complete the speciÐcation of the jet gas proper-P
j
\P

a
.

ties, we set the value of g, the density ratio, giving n
j
\ gn

aand The initial magnetic Ðeld is uniform and inT
j
\ T

a
/g.

the z-direction. The magnitude of the initial magnetic Ðeld
is set by Ðxing the parameter deÐned asb

i
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i
\ 8nP
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In Table 1 we have listed the properties of the8nP
j
/B

z
2.

simulations which we discuss in this paper. In this table M
sj
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TABLE 1

SIMULATION PARAMETERS

Simulation M
sj

M
sa

g b
i

Aa q
p
b

Steady1 . . . . . . 20 20 1 1.0 0.0 O
Steady2 . . . . . . 20 8.9 5 1.0 0.0 O
Steady4 . . . . . . 20 8.9 5 107 0.0 O
Steady5 . . . . . . 20 8.9 5 0.1 0.0 O
Pulse1 . . . . . . . 20 20 1 1.0 0.25 57
Pulse1a . . . . . . 20 20 1 1.0 0.50 57
Pulse2 . . . . . . . 20 8.9 5 1.0 0.25 93
Pulse2a . . . . . . 20 8.9 5 1.0 0.50 93
Pulse4 . . . . . . . 20 8.9 5 107 0.25 93

a Pulse amplitude.
b Pulse period (yr).

and refer to the sonic Mach number obtained by com-M
saparing the speed of the jet and the sound speed in the jet

and ambient medium, respectively.
The jet is injected at the z\ 0 plane fully collimated, i.e.,

only the z-component of the velocity is nonzero. The jet is
60 grid cells wide, corresponding to a physical radius of
5.0] 1015 cm. The jet is maintained during the simulation
by treating it as a boundary condition in the ““ ghost cells. ÏÏ
When initializing the simulation, the jet properties were
copied into the Ðrst 10 grid cells to allow the code to resolve
the forward and backward moving shocks on the grid in a
natural way. We have found that for a jet with a uniform
velocity in the z-direction, sometimes called a ““ top-hat ÏÏ jet,
the simulations develop instabilities at the radial boundary
of the jet. We believe this to be a consequence of numerical
round-o† error seeding a Kelvin-Helmholtz unstable
boundary. This problem is exacerbated by the use of a
reÑecting boundary condition at the z\ 0 plane. For that
reason we have chosen to give the in-Ñowing jet a velocity
proÐle which varies as an arctangent function, di†er-v0(r),ing signiÐcantly from a ““ top-hat ÏÏ proÐle in only the 10 or
so outermost grid cells. The z-component of the velocity
always remains superfast, ensuring that the jet inÑow
boundary conditions can be deÐned with impunity. To
model the jet pulsation, we have chosen to vary the jet
velocity sinusoidally as v

j
(r, t)\ v0(r)[1 ] A sin (2nt/q

p
)].

As the e†ects of varying the pulse period have been studied
before (Stone & Norman 1993), we have chosen to Ðx the
pulse period whereq

p
\ tcross/5,

tcross\
AL

z
v0

BA1 ] Jg
Jg

B

is the estimated jet crossing time over the length of the grid,
cm, in the z-direction.L

z
\ 1.5 ] 1017

4. RESULTS

4.1. Steady Jets : Early Evolution
In Figure 1 we present the density and magnetic Ðeld

lines for the simulation Steady1, a jet with no pulsing, at
quite an early time in the evolution of this jet. The density
image shown in Figure 1 is very similar to what is observed
for analogous hydrodynamic jets at similar times (Blondin,
Fryxell, & Ko� nigl 1990). It is therefore quite striking to note
that this simulation was initialized with an equipartition
strength, axial magnetic Ðeld. In fact, the formationb

i
\ 1,

FIG. 1.ÈLogarithm of the density and magnetic Ðeld lines. The ion
number density falls in the range of 3 cm~3 (white) to 440 cm~3 (black). The
evolutionary time is 36 yr.

of this eye-shaped shock pair is quite ubiquitous to the
simulations presented in this paper and plays an important
role in the formation of magnetic Ðeld reversals, a prerequi-
site feature for the occurrence of reconnection. A detailed
exposition of the kinematics involved in the formation and
evolution of this shock pair is essential to the conclusions of
this paper. Thus we will now present a self-contained
description of the formation and evolution of the bow
shock, jet shock, postshock gas, and embedded magnetic
Ðeld shown in Figure 1.

The formation of this eye-shaped shock pair can be
understood by considering the shock dynamics at early
times for a top-hat jet with an axial magnetic Ðeld. Initially,
the problem is one dimensional with a slipstream at the
outermost radial boundary and thus will form the charac-
teristic forward and reverse hydrodynamic shocks with a
contact discontinuity between. The gas pressure between
the forward and reverse shocks, or bow shock and jet shock,
will be increased over that of the ambient medium, so that
some dt after the shocks are formed a shock and rarefaction
wave will respectively propagate outward and inward radi-
ally. The rarefaction wave lowers the gas pressure between
the shock pair and induces an outward radial gas motion
which draws the magnetic Ðeld lines out into the forming
cocoon. The reduced postshock pressure increases the jet-
shock speed and decreases the bow-shock speed at the edge
of the jet compared to the axis, leading to the formation of
oblique shock fronts. In turn, the oblique shock fronts
redirect postshock ambient and jet gas in the positive radial
direction, further reducing the postshock pressure and
increasing the shock obliquity. This radial efflux of post-
shock gas continues until the bow shock and jet shock
nearly collapse onto one another at the outermost radial
edge, forming a quasi-equilibrium conÐguration, the eye-
shaped shock pair shown in Figure 1. We refer to it as a
quasi-equilibrium, simply because the e†ects of cooling
have not been mentioned yet, but, as we will see, play a
crucial role in the evolution of the system. With the intro-
duction of pulsing, the same dynamics described here will
occur with each pair of internal working surfaces, only on a
smaller scale.

We can estimate the time required, for the radialqeq,pressure gradients, induced by the rarefaction wave, to
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establish a quasi-equilibrium situation as being approx-
imately equal to the time required for a magnetosonic wave
to traverse the jet radius,

qeq \ R
j

S 4no
4ncP] B

z
2 .

Using values appropriate to the postshock region for this
simulation, we obtain an estimate for yr ; for refer-qeqB 20
ence, the image shown was taken at 36 years. By this time,
the jet shock has become sufficiently oblique at the outer-
most radial edge that the radial velocities of the postshock
gas are as high as of the initial jet velocity. The shock pair13will remain in the present conÐguration until the cooling
becomes signiÐcant and the shock pair collapses. While the
bow shock and jet shock remain spatially separated, the
postshock gas will continue to drag the magnetic Ðeld lines
into the cocoon.

The magnetic Ðeld was incorporated into the above
description of the postshock dynamics as a passive local
property of the gas. To justify this point of view and clarify
the role played by the embedded magnetic Ðeld during its
expulsion into the cocoon, we must consider the postshock
region in some detail. As stated earlier, initially the bow
shock and jet shock, or shock pair, are hydrodynamic
shocks. Thus at very early times we may estimate the post-
shock properties from the familiar strong shock (M1? 1)
relations (Landau & Lifshitz 1997),

T2
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B
2c(c[ 1)M12

(c] 1)2 ,
P2
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B
2cM12
c] 1

,
o2
o1

B
c] 1
c[ 1

\ 4 . (9)

The subscript 1 and 2 refer to the plasma upstream and
downstream of the shock, and is the sonic MachM1number in a reference frame moving with the shock front.
As a Ðrst approximation, these relations remain valid as
long as the shocks are approximately ““ normal.ÏÏ We note
also that the shocks in our simulations are too strong to
become the switch-on type Ouyed & Pudritz(M

f
[ 2 ;

1993). To calculate the postshock properties we need an
estimate for the velocity of the jet head. It is observed in the
numerical simulations of steady jets that the jet quickly
approaches a constant propagation speed and, for radiative
jets, that the bow shock and jet shock remain relatively
close to each other. Assuming these observations to be gen-
erally true, we transform to a coordinate system moving at
the speed of the jet head and construct a closed Gaussian
surface around the jet head with surfaces at z\ a (in the jet
beam), z\ b (in the ambient medium), and (at the jetr \R

jradius). Integrating equation (4) over the volume bounded
by these surfaces, we obtain, for a top-hat, pressure-
matched jet,
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where we have assumed that the net z-momentum in the jet
beam remains unchanged during its propagation toward
the terminal working surface and returned to Gaussian
units. The remaining integral describes the Ñux of
z-momentum through the radial boundary at Note,r \ R

j
.

however, that the distance between the bow shock and jet
shock at the outermost radial boundary is much smaller
than the jet radius. In addition, for the high Mach number
jets considered here the terms and in the integralov

z
v
r

B
z
B
r

are small compared to Thus we may, to a goodo
a
v
h
2.

approximation, neglect the right-hand side of the above
relation, and we recover the well-known relation (Norman,
Winkler, & Smarr 1983) for the velocity of the jet head,

v
h
\
A v

j
Jg

1 ] Jg
B

. (10)

Under these approximations we Ðnd that the magnetic Ðeld
will not inÑuence the jet propagation speed. We note that in
the case of strong toroidal magnetic Ðelds, Frank et al.
(1998) calculated the modiÐcation to equation (10) due to an
imbalance in the total (gas plus magnetic) pressure. The
result shows only a weak dependence on the magnetic Ðeld.

Together, equations (9) and (10) predict that for simula-
tion Steady1 the initial temperature will jump upT1\ 104
to K, and that the postshock pressure willT2\ 3.1 ] 105
be 125 times larger than the preshock pressure, in very good
agreement with the simulation. Estimating the cooling time-
scale, we Ðnd years, showing that cooling is impor-t

c
B 30

tant in this simulation. While the shocks remain
approximately ““ normal,ÏÏ the magnetic Ðeld is only weakly
a†ected by the shock waves. Under these circumstances we
expect to Ðnd the dimensionless parameter b \

in the postshock region even though it was8nPgas/B2B 100
initialized to 1. Simulations show this to remain a good
estimate even at the time at which Figure 1 was recorded.
We conclude that for axial magnetic Ðelds with b [ 0.01 in
the jet beam, the dynamics of the postshock gas will be
dominated by hydrodynamic forces.

The dynamics of the gas in the postshock region is itself a
very interesting phenomenon. If we follow the motion of the
gas between the shock pair from the z-axis outward radially
we see that the gas is forced to follow a converging Ñow
pattern. Examining the radial gas velocity we Ðnd that the
gas is subsonic near the z-axis with a radial gas velocity that
increases as the Ñow is constricted. At the gas passesr BR

jthrough the sonic point and undergoes supersonic expan-
sion into the cocoon. This same feature is seen by consider-
ing the sonic Mach number of the gas in a reference frame
moving with the jet head. Thus the shock pair and post-
shock gasdynamics o†ers an elegant example of a de Laval
nozzle with an embedded magnetic Ðeld caught in the Ñow.
The expulsion of postshock gas into the cocoon continues
until cooling depletes the thermal energy between the shock
pair to such an extent that the bow shock and jet shock
collapse onto one another. When this occurs, the magnetic
Ðeld lines become pinched, forming an X-type singularity
which su†ers magnetic reconnection. In our simulations, at
least, this cooling-induced reconnection appears to be one
basic process by which magnetic reconnection may occur.

As the postshock gas expands into the cocoon, both the
gas pressure and magnetic Ðeld strength are reduced,
though not at the same rate. This leads to an increase of b to
B104 in the cocoon of the present simulation. Thus the
dynamics of the gas in the cocoon, like the postshock gas
between the shock pair, is predominantly controlled by the
hydrodynamic features of the Ñow, and the magnetic Ðeld is
forced to follow along. In the cocoon and the region
between the shock pair we also observe magnetic reconnec-
tion ; however, here it is not driven by cooling. By studying
the evolution of the magnetic Ðeld lines, we Ðnd that the gas
in these regions is susceptible to ““ driven ÏÏ reconnection.
That is, the complex motion of the gas can fold the magnetic
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Ðeld lines over and squeeze them together, and the Lorentz
force is too weak to prevent the inevitable reconnection.
Since those conÐgurations are ““ tearing mode ÏÏÈunstable,
many local sites of reconnection can develop, so that recon-
nection is very fast (e.g., Jones et al. 1997).

4.2. Steady Jets : Role of b
Next, in Figures 2a and 2b we compare the evolved state

of three steady, overdense jets, simulations Steady5,
Steady2, and Steady4. These di†er only in the value of b

i
\

0.1, 1.0, and 107. Our intention is to study how the inclusion
of dynamically signiÐcant axial magnetic Ðelds modiÐes the
long-term characteristics of an MHD jet compared to a
hydrodynamic jet by varying the strength of the magnetic
Ðeld. Our results show numerous di†erences between
strong-Ðeld and weak-Ðeld simulations which can be under-
stood as a consequence of the Lorentz force, or, equiva-
lently, magnetic pressure and tension forces. To wit, using

law (neglecting the displacement current), theAmpèreÏs
Lorentz force may be rewritten as

1
c

(J Â B) \ [1
4n

B Â ($ Â B) \ (B Æ $)B
4n

[ $
AB2
8n
B

.

(11)

In the Ðnal expression, the Ðrst and second term are often
called the magnetic tension force and pressure force, respec-
tively. It is often argued that this form is preferable, since
the magnetic pressure term can be added to the gas pres-
sure, e†ectively changing the equation of state, leaving the
Lorentz force as being caused by the tension term alone.
This separation is artiÐcial, however, since the two terms
just deÐned as the pressure and tension are not indepen-
dent ; after all, the Lorentz force is always orthogonal to the
magnetic Ðeld, since B Æ (J Â B) \ 0. This can be made

FIG. 2a

FIG. 2.È(a) Logarithm of the density for simulations Steady4, Steady2, and Steady5 ( from top to bottom). The initial magnetic Ðeld strength increases from
top to bottom. The ion number density falls in the range of 5 cm~3 (white) to 3.6 ] 102 cm~3 (black). From top to bottom the evolutionary times are 441, 464,
and 464 yr. (b) Magnetic Ðeld lines for simulations Steady4, Steady2, and Steady5 ( from top to bottom). The initial magnetic Ðeld strength increases from top
to bottom. From top to bottom the evolutionary times are 441, 464, and 464 years.
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FIG. 2b

explicit by rewriting the Lorentz force as follows :

1
c

(J Â B)\ B2
4nR

nü [ $
M

AB2
8n
B

, (12)

where is a unit vector directed toward the local center ofnü
curvature of the Ðeld line, R is the local radius of curvature,
and is the gradient operator in the two directions$

Morthogonal to the magnetic Ðeld. We will refer, henceforth,
to the Ðrst and second term in this expression for the
Lorentz force as the magnetic tension and pressure force,
respectively. In this form it is immediately apparent that the
tension force attempts to straighten out the magnetic Ðeld
lines, while the pressure force attempts to make the mag-
netic Ðeld strength uniform. Comparing the simulations
presented in Figures 2a and 2b in light of equation (12),
many di†erences become apparent in both the density and
the magnetic Ðeld lines, whose origin must ultimately be
traced back to the only di†erence in their initial conditions,
the strength of the magnetic Ðeld.

We Ðrst consider the jet head, the most dynamic region in
the three simulations, and note that the maximum density

values in each jet are quite comparable. This can be under-
stood by recognizing that in a uniform MHD Ñuid the
easiest direction in which one may compress the Ñuid is
parallel to the magnetic Ðeld, since, for small displacements,
the Lorentz force has no inÑuence. This is also consistent
with the Ðnding that the density is a maximum near the
z-axis in each simulation, where the magnetic Ðeld lines, by
symmetry, must be nearly parallel to the z-axis. The second
trend we see in Figure 2a is the steady decrease in the
stand-o† distance, or the distance from the bow shock to
the jet shock, as the initial magnetic Ðeld strength is
increased. During the evolution of these jets, the jet shock is
subjected to perturbations in the jet beam due to the beamÏs
interaction with the hot slipstream and cocoon. Waves gen-
erated in the interaction produce distortions in the jet
shock, turning its normal oblique to the jet velocity. The
oblique jet shock gives rise to higher postshock velocities
and shock focusing. This shock-focused gas competes with
the Lorentz force in determining its postshock motion. For
the weak magnetic Ðeld simulation the gas momentum is
dominant, which leads to vortical motions in the region
between the shock pair. This ““ turbulence ÏÏ in the region
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between the shocks creates a dynamic pressure and
increases the stand-o† distance. As the initial magnetic Ðeld
is strengthened, the turbulence is inhibited by the tension
associated with the Ðeld. This view is supported by the
magnetic Ðeld line images in Figure 2b, which show increas-
ingly twisted magnetic Ðeld lines as the initial strength of
the magnetic Ðeld is reduced. It is also consistent with the
relative dynamical importance of the Ðeld as measured by
the parameter b in the postshock region.

Simulations Steady4, Steady2, and Steady5 were initial-
ized with equal to 107, 1.0, and 0.1. After propagation theb

ivalue of b in the jet head falls in the range 107È1014, 1È104,
and 0.5È102, respectively. Thus even in the strongest Ðeld
simulations where the inÑuence of magnetic stresses has
clearly altered the propagation characteristics, there are
regions where the Ðeld would appear to be dynamically
weak. It is important, however, to note that the b parameter
does not measure the e†ect of tension forces, which will
depend critically on the local topology of the Ðeld. Thus we
conclude from this comparison that the inÑuence of a mag-
netic Ðeld on the jet head can be complex and will depend
critically on both the strength and orientation of the mag-
netic Ðeld.

We turn now to the cocoon formed by the radial expul-
sion of postshock gas from between the shock pair. The
postshock values of b just quoted for the three simulations
demonstrate that the magnetic Ðelds may have an inÑuence
on the postshock dynamics for the simulation. Asb

i
\ 0.1

is reduced, we see from both the density and magneticb
iÐeld line images that the presence of a strong axial magnetic

Ðeld inhibits the growth of instabilities in gas ejected from
the shock pair. This inhibition is e†ected primarily by
tension forces that constrain motions which would draw
out and bend Ðeld lines as material Ñows into the cocoon.

Note in the simulations that as the magnetic Ðeld
strength is increased, the likelihood of magnetic reconnec-
tion, as measured by the number of closed Ðeld lines in
Figure 2b, is reduced. We can understand this trend by
imagining the evolution of the magnetic Ðeld as it is Ðrst
folded over to form a Ðeld reversal or an X-point. Only then
can the Ðeld line su†er magnetic reconnection. The tension
force associated with the magnetic Ðeld inhibits the folding
over or reversal of the magnetic Ðeld. This picture is consis-
tent with the increasingly straight and uniform magnetic
Ðeld lines seen in Figure 2b as the initial Ðeld strength is
increased. Thus the presence of a strong magnetic Ðeld
increases the ““ order ÏÏ in the simulation. Similarly, as one
considers increasing Ðeld strengths there is a range in which
magnetic reconnection is likely, but also where magnetic
tension is sufficient to induce ““ self-organization.ÏÏ That is,
the local cross helicity, measured by is increased.¿ü Æ BŒ ,

Finally, note the general trend of a widening bow shock
as the magnetic Ðeld strength is increased. This e†ect owes
its origin to the increased magnetosonic wave speed, and is
interesting in light of the attempts to explain molecular
outÑows as being driven by YSO jets. However, we must be
careful not to misinterpret this increase in the wave speed as
indicating an increase in the mass Ñux through the outer-
most radial boundary. In fact, just the opposite occurs, as
the reader may readily conÐrm by counting the number of
Ðeld lines that cross the radial boundary of the grid. As the
magnetic Ðeld strength is increased, fewer and fewer Ðeld
lines cross the outermost radial boundary. Since the gas is
tied to the Ðeld, increasing the strength of the axial magnetic

Ðeld decreases the mass Ñux through the outermost radial
boundary of the grid. Generally speaking, for theb

i
[ 0.1

jet propagation is becoming sufficiently one-dimensional
that it is beginning to resemble siphon Ñows in magnetic
Ñux tubes (Thomas 1988).

4.3. Pulsed Jets : Shock Formation and Interaction
We turn now to the study of pulsed MHD jets with axial

magnetic Ðelds. In Figures 3a and 3b we show the evolution
of the density and magnetic Ðeld for an equal density, g \ 1
simulation, Pulse1a. This simulation was initialized with an
equipartition, axial magnetic Ðeld, but many of theb

i
\ 1

evolutionary characteristics are similar to hydrodynamic
jets. As each pulse propagates onto the grid it gradually
steepens to form a pair of shock waves, often referred to as
internal working surfaces, which are the analogs of the bow
shock and jet shock. Since gas ahead of any given internal
working surface is in motion, the internal working surfaces
will propagate at higher velocities than the jet head or ter-
minal working surface, and will eventually collide with the
jet head. The repetitive collisions between the internal and
terminal working surfaces serve to resupply the terminal
working surface with thermal energy which will be con-
verted into radiation. For sufficiently high pulse amplitude
this might lead to observable temporal variations in the
brightness of the terminal working surface, albeit on a long
timescale. The collision period would be shifted from the
pulse period due to the relative motion of the internal
working surfaces and the jet head. As an estimate of the
collision period, consider the situation when the speed of
the jet head, and the speed of the internal working sur-v

h
,

faces, are constant, and the pulse period isviws, viws[ v
h
, q

p
.

Then the time between collisions, or collision period isq
c
,

q
c
\ q

p

A
1 [ v

h
viws

B~1
. (13)

Loosely speaking, we should expect the collision period to
increase with g, the density ratio. Unfortunately, this rela-
tion gives the pulse period, which for YSO jets is estimated
to be on the order of 10 yr, as a lower bound to the collision
period.

When the variation in the jet velocity is large compared
to the variation in either the speed or sound speed, aAlfve� n
simple analysis using the inviscid form of BurgersÏs equa-
tion can accurately predict the time and location for a shock
to form, as has been noted by previous authors (Smith et al.
1997 ; Raga & Kofman 1992 and references therein). We
present a simple analytic treatment predicting the time and
position at which the velocity variations will steepen into
shock waves and Ðnd a closed-form solution for the velocity
variations used in this study. We begin by considering a gas
parcel which leaves the position at time with az\ z0 t0velocity and another gas parcel which leaves a shortv

j
(t0),time dt later. A shock will form when these two gas parcels

intersect, or when

(t [ t )v
j
(t0) \ (t [ t0[ dt)v

j
(t0] dt) .

Rearranging these terms and taking the limit as dt goes to
zero, we get the time t at which a gas parcel which leaves z0at time with a velocity will form a shock with itst0 v

j
(t0)neighbors. We Ðnd that

t [ t0\ v
j
(t0)

v
j
@(t0)

and v
j
@(t0) \

dv
j
(t0)

dt0
. (14)
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FIG. 3a

FIG. 3.È(a) Evolution of the logarithm of the density for simulation Pulse1a. The evolutionary times are 86, 129, 172, and 230 yr ( from top to bottom). The
ion number density falls in the range of 1 cm~3 (white) to 29.6 ] 103 cm~3 (black). (b) Evolution of the magnetic Ðeld lines for simulation Pulse1a. The
evolutionary times are 86, 129, 172, and 230 yr ( from top to bottom).

Since and we must have to form av
j
(t0)[ 0 t [ t0, v

j
@(t0)[ 0

shock. For we will form a shock for i.e.,v
j
@(t0)\ 0 t \ t0,rarefaction waves steepen to form shocks when time is

reversed. Once a shock wave forms, the full set of ideal
MHD equations are required to follow the dynamics.
Therefore, from the above analysis we would prefer to know

the earliest time at which a shock will form, or minimize t
with respect to variations in which givest0,

2Mv
j
@(t0)N2\ v

j
(t0)vj@@(t0) . (15)

This tells us that since and we must havev
j
(t0) [ 0 v

j
@(t0) [ 0

to have a minimum in t. Solving this equationv
j
@@(t0) [ 0
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FIG. 3b

yields the time at which a gas parcel will leave and bet0 z0the Ðrst to form into a shock with its neighbors. We now
apply these relations to the speciÐc jet velocity proÐle used
in the this study, i.e.,

v
j
(t)\ v6 [1 ] A sin (ut)] .

In what follows we choose A to be positive, and since
we must have A\ 1. Applying the constraintsv

j
(t)[ 0

noted earlier, namely, and we Ðnd thatv
j
@(t0) [ 0 v

j
@@(t0) [ 0,

modulo 2n. To determine more accu-3n/2 \ut0\ 2n t0rately, we need to solve equation (15), which for the chosen
jet velocity proÐle is readily found to be a quadratic equa-
tion in terms of The correct solution,sin (ut0).

sin (ut0) \
1 [ J1 ] 8A2

2A
, (16)
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is chosen by noting the requirement that Makingv
j
@@(t0)[ 0.

use of equation (14), we can calculate the time to shock
formation,

t \ 1
u

sin~1
A1 [ J1 ] 8A2

2A
B

] 3 [ J1 ] 8A2
u[4A2[ (1[ J1 ] 8A2)2]1@2

, (17)

which shows that the shock formation process will be
periodic, as should be expected, with the period of the veloc-
ity variations. We can also calculate the distance that the
gas parcel will travel before forming a shock :

z[ z0\
A v6
2u
B (3[ J1 ] 8A2)2

[4A2[ (1[ J1 ] 8A2)2]1@2
. (18)

We can use the above analysis and check for consistency
with the dynamics observed in the simulations. We have
compared the time and location at which a shock is formed
in our simulations to the value predicted by the equations
above, Ðnding a very good agreement. For example, con-
sidering simulation Pulse1a, these formulae predict that a
shock will Ðrst be formed at 124 yr and 751 AU from the
bottom of the simulation grid. At 122 yr a very steep veloc-
ity front is located at 640 AU, though a shock has not yet
developed. At 129 yr, as shown in Figure 3a, a well-
developed shock pair is located at 950 AU. These nicely
bound the location and time of shock formation in this
simulation as well as the predicted values. We Ðnd similar
agreement in all of the other simulations presented in this
paper. In general, we estimate that the errors associated
with using BurgersÏs equation to predict the time and loca-
tion of shock formation are less than 5%.

Aside from the formation of shocks, the introduction of a
velocity variation has incorporated new dynamics into the
simulations. For example, making use of the equation of
mass conservation one may show that velocity variations
lead to compression and rarefaction of the jet beam during
propagation. Raga & (1998) have independently per-Canto�
formed a similar analysis to the one presented here and
study the density jump across internal working surfaces.
They show through both analytical and numerical means
that sinusoidal velocity variations naturally lead to an
increased density upstream and decreased density down-
stream of the shock. This is a general feature which should
be expected whenever the velocity variations are periodic
and continuous. Making use of the continuity equation, one
may show that the density of a gas parcel o at time t which
was launched at time with velocity and density ist0 v

j
(t0) o0given by

o \ o0
1 [ k(t [ t0)

, where k \ v
j
@(t0)

v
j
(t0)

. (19)

Considering the velocity variations studied in this paper, it
follows that for the gas will be rareÐed, whilecos (ut0)\ 0
for the gas will be compressed. Simulationscos (ut0)[ 0
show that the portions of the jet pulse which su†er compres-
sion due to their velocity variation pass through the inter-
nal working surfaces on a timescale of the pulse period,
leaving only the gas which su†ers rarefaction separated by
the internal working surfaces. We might estimate the time
required for all of the gas that undergoes compression to

pass through the internal working surfaces by asking when
a gas parcel ejected at a time will collide with aut0\ 3n/2
gas parcel ejected at a time This yieldsut0\ 5n/2.

t [ t0\
A1 ] A

4A
B
q
p

, (20)

where is the pulse period. Note that this calculationq
pignores the presence of shock waves and is therefore only an

estimate. For the pulse amplitudes studied here this time is
on the order of the pulse period, in agreement with the
simulations. Ignoring the pulse closest to the jet base, the jet
beam consists of pairs of internal working surfaces separat-
ed by a rarefying beam. The upstream to downstream
density contrast across internal working surfaces results
from a simple fact. The gas downstream of the internal
working surface has propagated for a longer time than the
gas upstream of the internal working surface and therefore
has a lower density. As described by Raga & (1998),Canto�
this density contrast is a common feature of many HH
objects in YSO jets.

The rarefaction, whose origin lies in the velocity varia-
tions, has additional consequences for jets with embedded
magnetic Ðelds. Since the velocity is parallel to the magnetic
Ðeld, as long as the jet remains approximately in pressure
balance with the surrounding gas, the magnetic Ðeld
strength will remain constant. The decreasing gas density
will lead to an increasing speed, as well an adiabaticAlfve� n
expansion that cools the gas, decreasing the parameter b \

Our simulations bear out this expectation. We8nPgas/B2.
Ðnd that in the regions of the jet beam between the internal
working surfaces, b decreases with increasing z and can
drop by as much as a factor of 20. The reduction in b and
the Mach number should have important e†ects onAlfve� nic
the growth rate for Kelvin-Helmholtz instabilities, which
depends on the Mach number.Alfve� nic

Turning now to the magnetic Ðeld lines (Fig. 3b), we see
that, as mentioned earlier, each pair of internal working
surfaces evolves in a manner analogous to the bow shock
and jet shock. The main di†erence between each pair of
internal working surfaces and the (bow shock, jet shock)
pair is the shock strengths. Since the gas in front of each
pair of internal working surfaces is in motion, the shocks
will be weaker and the postshock temperatures and pres-
sures will be lower. Therefore, the cooling and radial expul-
sion of postshock gas into the cocoon will be lessened. For
example, from the magnetic Ðeld lines at 86 years, one can
see that just as the gas between the bow shock and the jet
shock has been forced radially outward to form the cocoon,
the internal working surfaces push gas radially outward as
well, only on a smaller scale. Note that by 130 years the
pulse, evident at 86 years, has collided with the jet shock,
giving rise to small reconnection regions and quite a com-
plicated shape of the jet head. The large loops of Ðeld lines
ejected from between the bow shock and the jet shock su†er
a reconnection event between 86 and 130 years, which
leaves them isolated in the cocoon. Each jet pulse emitted
subsequently to the formation of this magnetic island
bu†ets it with the postshock gas ejected radially from
between the internal working surfaces. This causes the
islands to su†er enhanced dissipation as the simulation
evolves. The routine we utilize to draw these magnetic Ðeld
lines allows us to follow individual Ðeld lines from frame to
frame. Thus the reader may follow the central Ðeld loop



FIG. 4a

FIG. 4b

FIG. 4.È(a) Logarithm of the density for simulations Pulse4 (top) and Pulse2 (bottom) at an evolutionary time of 418 yr. The initial magnetic Ðeld strength
increases from top to bottom. The ion number density falls in the range of 5 cm~3 (white) to 11.7 ] 103 cm~3 (black). (b) Magnetic Ðeld lines for simulations
Pulse4 (top) and Pulse2 (bottom) at an evolutionary time of 418 yr. The initial magnetic Ðeld strength increases from top to bottom.



FIG. 5a

FIG. 5b

FIG. 5.È(a) Logarithm of the density for simulations Pulse1 (top) and Pulse1a (bottom) at evolutionary times of 266 and 229 yr, respectively. The ion
number density falls in the range of 1 cm~3 (white) to 8.3 ] 103 cm~3 (black). (b) Magnetic Ðeld lines for simulations Pulse1 (top) and Pulse1a (bottom) at
evolutionary times of 266 and 229 yr, respectively.
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shown at 130È230 yr, whereupon it has shrunk to a smaller
size.

4.4. Pulsed Jets : T he E†ect of b
We turn our attention now to Figures 4a and 4b, compar-

ing simulations Pulse2 and Pulse4, which di†er only by the
strength of the initial magnetic Ðeld. As shown in Table 1,
these simulations are initialized with andb

i
\ 107 b

i
\ 1,

respectively. The weak-Ðeld simulation is essentially a
hydrodynamic jet, so that the comparison of these two
simulations clearly shows which features of a pulsed jet are
modiÐed by the incorporation of an equipartition axial
magnetic Ðeld. Notice that the general characteristics of the
jet are only weakly modiÐed. The internal working surfaces
are at the same location in both jets, as is a crossing shock.
The di†erences between the simulations are in the details.

Consider Ðrst the density for the two simulations. The
maximum density in each simulation occurs in the head of
the jet where the crossing shock pinches the gas toward the
z-axis, but the maximum density in the weak-Ðeld simula-
tion is approximately twice as large as in the simula-b

i
\ 1

tion. The di†erence in the gas compression due to the
crossing shock is a consequence of the often-stated fact that
magnetic pressure (proportional to in this case) canB

z
2

inhibit gas compression. This is in marked contrast with the
results from the steady simulations (demonstrating the
importance of the magnetic Ðeld orientation), where the
Ðeld orientation was such that it did not a†ect the gas com-
pression. In the equipartition Ðeld strength simulation we
Ðnd that the crossing shock has compressed the magnetic
Ðeld to such an extent that b B 0.1. While it is evident from
the magnetic Ðeld lines that in the weak-Ðeld case the
strength of the magnetic Ðeld is greatly enhanced at the
crossing shock, it is still extremely weak in comparison to
the gas pressure. Even at the crossing shock, b B 105 in the
weak-Ðeld jet. As a second example, note the low-density
region surrounding the jet beam in the weak-Ðeld simula-
tion. No such region occurs in the simulation. Theb

i
\ 1

highly uniform spacing of Ðeld lines in the simulationb
i
\ 1

suggests that we can again ascribe the origin of this di†er-
ence to the magnetic pressure. The e†ects of the magnetic
pressure also appear when one considers the postshock
density of material that passes through the oblique section
of the bow shock. The postshock density of the weak-Ðeld
simulation is about a factor of 3 larger than in the b

i
\ 1

simulation. In the case of the initially equipartition Ðeld
strength simulation, b \ 1 in this region of the Ñow,
showing that the magnetic pressure indeed can have a
strong inÑuence on the postshock compression.

There are also strong e†ects on the jet due to pulsing. If
we compare the high Ðeld pulsed-jet simulation to the
steady jet shown in Figures 2a and 2b, with b \ 1 initially,
we immediately notice that the bow shock is much more
streamlined in the case of the pulsed jet. We attribute this
streamlining to the unsteady nature of the collisions
between the internal working surfaces and the terminal
working surface. Finally, as was mentioned earlier, the
unshocked gas between the internal working surfaces
rareÐes as it propagates, cooling adiabatically. Thus, the
sonic Mach number of the jet increases along the jet axis.
The sonic Mach number in these jets increases from 20 to
D40 just upstream of the jet shock, or terminal working
surface. It is also worth noting the increased number of
closed Ðeld lines behind the bow shock in the weak-Ðeld

simulation compared to the simulation. This is inb
i
\ 1

agreement with the trend noted earlier, that, as the strength
of the magnetic Ðeld is increased, the occurrence of recon-
nection is reduced.

4.5. Pulsed Jets : T he E†ect of Pulsation Amplitude
In Figure 5 we compare two jet simulations, Pulse1 and

Pulse1a, which di†er only by the amplitude of the jet veloc-
ity variations. Our intention is to clarify the e†ects of these
variations on the physical characteristics of the jet, and their
dependence on the amplitude of the variations. Consider
the rarefaction regions in the jet beam, between the pairs of
internal working surfaces, whose origin was previously
described. As was mentioned earlier, the velocity variations
cause the gas between the internal working surfaces to
undergo an adiabatic rarefaction, which at some point will
be limited by radial motions due to an imbalance in the
total, gas plus magnetic, pressure. In the 25% and 50%
pulsed jets, this rarefaction resulted in a gas pressure
reduction by factors of 10 and 100, respectively, and hence
the parameter b is reduced to 0.25 and 0.1, respectively. This
di†erence can be understood by considering the terms in the
denominator of equation (19) which show us that the higher
the pulse amplitude, the faster the rarefaction process will
occur. As we just noted, however, this rarefaction process
will eventually be terminated by radial gas motions, which
is exactly what causes the compressional wave in the 50%
pulsed-jet beam. This compressional wave is driven by an
imbalance in the total pressure, gas plus magnetic, which
di†ers by an order of magnitude across the wave front.

Next we compare the magnetic Ðeld lines expelled from
the postshock region between the internal working surfaces
for the two simulations. The images show that a higher
pulse amplitude leads to a greater efflux of postshock
material into the cocoon. This is quite reasonable, since the
higher the pulse amplitude, the stronger the shock wave and
the higher the postshock pressure. The gas that is driven out
from between the postshock region of the internal working
surfaces has an additional e†ect on the jet beam. As the
internal working surfaces propagate down the jet beam the
expelled gas pushes cocoon material ahead of it out of the
way, leaving a wake of rareÐed gas behind. This is the major
factor leading to the di†erence in the density adjacent to the
jet beam for the two simulations.

We can also see the e†ects of increased pulse amplitude
by considering the jet head. In both simulations, a pulse has
recently collided with the jet head. The maximum tem-
perature in the simulations occurs in the jet head. This is
about twice as large for the 50% pulse amplitude jet com-
pared to the 25% simulation. Finally, note the numerous
locally closed Ðeld loops caused by reconnection events in
the 50% pulse amplitude simulation. Generally speaking,
this contrast owes its origin to the greater violence associ-
ated with the collisions of the internal working surfaces with
the terminal working surface in the 50% pulse amplitude
case, when compared with the 25% simulation. Instabilities
associated with each shock collision appear to increase the
local turbulence in the Ñow in the jet head leading to more
Ðeld reversals and reconnection.

5. DISCUSSION : MAGNETIC TENSION AND

RECONNECTION

Our simulations demonstrate that while the global mor-
phology of the jets is not strongly a†ected by initially equi-
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partition strength poloidal magnetic Ðelds, the details of the
Ñow pattern can be changed. In addition, the presence of
magnetic reconnection leads to a new means for trans-
ferring energy in the bulk Ñow into thermal energy in a way
that does not directly involve shocks. We observe reconnec-
tion in our simulations in two distinct situations. The Ðrst is
the dramatic, cooling-induced pinching o† of Ðeld lines as
the bow shock and jet shock collapse onto one another,
shown in Figure 3b for an g \ 1 jet. It should be noted that
by increasing the jet velocity we can quickly enter a param-
eter regime where the cooling is insufficient to cause the
bow shock and jet shock to collapse onto one another. In
this case no reconnection occurs at the jet head for the
magnetic Ðeld lines dragged out into the cocoon. The
second situation in which we observe reconnection is the
more-often-spoken-of situation, when a complex Ñow
pattern folds over and pushes together opposed magnetic
Ðelds. This is observed most commonly in the pulsed jets,
since these lead to the most complex Ñow patterns.

Regarding the Ðrst situation, an interesting question to
ask is : ““What strength magnetic Ðeld is necessary to inhibit
the reconnection? ÏÏ The obvious answer to this question is
that for b > 1 the gas pressure can do little to compress the
magnetic Ðeld and is only capable of bending the magnetic
Ðeld for a very large radius of curvature. Therefore, recon-
nection will not occur, unless driven directly by the kine-
matics of the Ñow. Consider the description presented in
° 4.1 on the early development of the shock pair for a
top-hat jet and initially axial magnetic Ðeld. As described
there, some small dt after the bow shock and jet shock are
formed, a shock wave and a rarefaction wave will respec-
tively propagate outward and inward radially. It is at this
stage that for the most part we previously ignored the
e†ects of the magnetic Ðeld on the kinematics since, b B 102
in the postshock region. We would require inb

i
B 0.01

order to obtain b B 1 in the postshock region. For the g \ 5
simulations presented, we do not resolve the cooling region
but still Ðnd magnetic Ðeld lines dragged outward radially
into the cocoon to an extent dependent on the strength of
the magnetic Ðeld. As an example, in simulation Steady5
b B 10 in the postshock region, during the Ðrst 100 years or
so, while and the efflux of postshock gas is muchb

i
\ 0.1,

less than that observed in the other simulations shown in
Figures 2a and 2b.

In support of this discussion we now present a simple
argument based on the order of magnitude of terms in the
momentum equation. The MHD momentum conservation
equation can be written in the following form:

o
Lu
Lt

\ [o(u Æ $)u [ $P
g
] 1

c
(J Â B) . (21)

We are interested in the relative balance of forces in the
radial direction. A Ðeld reversal occurs when gas and the
embedded magnetic Ðeld are drawn outward from the body
of the jet by the combination of gas pressure and ram pres-
sure terms. As the Ðeld lines are drawn out, the magnetic
Ðeld in the postshock region will be reduced in magnitude,
leading to a magnetic pressure force directed radially
inward. In addition, since the Ðeld lines are anchored at the
shock surface, the magnetic Ðeld lines will be bowed inward
radially, leading to a tension force directed radially inward.
A Ðeld reversal implies a strong folding of a Ðeld line. We
take to be the characteristic distance over which the gasR

j

pressure and magnetic pressure will vary. Note, however,
that the radius of curvature for the Ðeld line that will act at
the vertex of the loop will be of order of the stand-o† dis-
tance D between the two shocks. Thus a Ðeld line that was
originally parallel to the z-axis is ““ plucked ÏÏ outward radi-
ally with the footpoints of the line connecting it to the jet
separated by a distance D. The radius of curvature for the
line will be D/2.

Transforming the Lorentz force term using equation (12)
and considering only the scale of the gradient terms allows
us to write the following condition for the Lorentz force
overwhelming the other forces. We use the subscript 2 to
refer to conditions behind the shocks :

B22
2nD

] B22
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. (22)

The magnetic Ðeld in the outward Ñowing gas can be found
from Ñux conservation. If the majority of the Ðeld comes
from jet gas outside some radii thenR

i
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so that
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To simplify this expression we substitute

R
i
2\ (1[ j)R

j
2 , (25)

for j [ 0, giving
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z
. (26)

The other terms in equation (22) can be found from the
strong, isothermal shock (sonic Mach number rela-M

s
? 1)

tions : The use of the isothermalo2\ o
j
M

s
2 ; P

g,2\ o
j
v
j
2.

conditions means this model is applicable for times t [ t
c
.

Note also that we are assuming that the two components of
the Ðeld in the loop and have approximately equal(B

r
B

z
)

strength. For the radial Ñow velocity we write u
r,2 \ dv

jwhere the simulations show that d ¹ 0.3 is a typical value.
Together, for we obtainD>R

j
,

b ¹
4j2

cM
s
2(1] d2M

s
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AR

j
D
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. (27)

The last piece of information needed is the stand-o† dis-
tance between the two shocks. Falle & Raga (1993) provide
an analysis of the Ñow between an internal working surface
for pure hydrodynamic jets. Since we have found that the
compression ratios behind the shocks in our simulations are
not strongly a†ected by the magnetic Ðelds, we use their
result that With these relations we canD\ (e1@2/2M

s
)R

j
.

derive the following relationship between the strength of the
Ðeld (in terms of b) needed to retard the radial Ñow and the
sonic Mach number :

b ¹
32j2M

s
c(1] d2M

s
2)
A 1
e3@2
B

. (28)
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In the limit of strong shocks we Ðnd

b ¹
32j2

cd2M
s

A 1
e3@2
B

.

For the (bow shock, jet shock) pair in the g \ 1M
s
\ 20

simulations this gives a limit of b \ 0.2. This matches very
well with the observation, evident in Figure 2b, that only
the simulation showed a strong reduction inb

i
\ 0.1

tangential motions and reconnection events.
We note also that our simulations showed that when Ðeld

reversals did occur, reconnection did not happen until after
a cooling time Strong cooling reduces the stand-o† dis-t

c
.

tance D, which is also the characteristic Ðeld scale of the
Ðeld reversed region. The exact mechanism by which recon-
nection occurs is still a subject of considerable debate ;
however, our results concerning the rate of reconnection
and the stand-o† distance are easily understood in terms of
a reconnection velocity This is the speed at which ÑuxVrec.can be dragged into a reconnecting region. In the Sweet-
Parker model (Parker 1979) this can be expressed in terms
of the resistive di†usion coefficient g and the width, l, of the
reconnection layer :

Vrec \ 2g
l

. (29)

Since l¹ D, we see that one expects that reconnection will
not occur for large stand-o† distances. Consideration of Vrecfor other forms of reconnection such as tearing mode
(Vishniac & Lazarian 1999) yield similar conclusions.

6. CONCLUSION

To summarize, we have studied the evolution of steady
and pulsed, radiative, magnetohydrodynamic jets for a
range of parameters applicable to YSOs. Our simulations
studied the speciÐc case of an initially axial magnetic Ðeld
with a strength characterized by the parameter b

i
\

0.1È107. We Ðnd that the general characteristics of a
RMHD jet with an embedded axial magnetic Ðeld do not
di†er from those of its hydrodynamic counterpart. Instead
we Ðnd that the inÑuence of the magnetic Ðeld is to modify
the details of the Ñow. In particular we Ðnd that the Ðelds
can lead to an inhibition of instabilities, and increase in the
““ order ÏÏ of the Ñow, and the introduction of magnetic
reconnection.

We Ðnd that for the case of axial magnetic Ðelds that are
initially of equipartition strength or less, the postshock
dynamics will be dominated by the hydrodynamics of the
Ñow. This is due to the shock-induced increase in the
thermal pressure and relatively small change to the mag-
netic Ðeld strength. The postshock Ñow between the bow
shock and the jet shock can be understood, when b ? 1, as a
de Laval nozzle with radially ejected, postshock Ñow drag-
ging out the embedded axial magnetic Ðeld into the cocoon,
where it is susceptible to reconnection. When the cooling is
sufficiently strong to cause the collapse of the bow shock
and jet shock onto one another, the magnetic Ðeld lines
dragged into the cocoon su†er magnetic reconnection.

For steady jets we Ðnd that axial magnetic Ðelds have
little e†ect on the postshock compression, or maximum
density in the head of evolved jets. This is not a surprising
result at all, since the bow shock and jet shock are never far
from normal shocks, and the maximum compression will

occur in regions where the shock is nearly normal to the
Ñow. Instead we Ðnd that strong magnetic Ðelds can inhibit
the motion of complex Ñows in the head that would bend or
twist the magnetic Ðeld. It is the tension associated with the
Ðeld which is the agent of the inhibition. We also Ðnd a
reduction in the occurrence of reconnection with the
increase in the magnetic Ðeld strength.

With the introduction of jet pulsing, new features appear
in the Ñow. We presented analytic arguments to predict the
time and location of shock formation via BurgersÏs equa-
tion, Ðnding a good agreement with the simulations. Similar
arguments were used by Raga & (1998) to describeCanto�
the formation of upstream to downstream density contrasts
across internal working surfaces. Jet rarefaction between
the sets of internal working surfaces leads to an increasingly
magnetic ÐeldÈdominated (i.e., b decreasing) jet with propa-
gation. This may be an important point for jet stability as
the rarefaction between the internal working surfaces leads
to a decrease in the Mach number, which in linearAlfve� nic
perturbation theory controls the growth of Kelvin-
Helmholtz instabilities. We have also found that the incorp-
oration of pulsing into the jet has lead to increasingly
complicated Ñow patterns and thereby an increased
occurrence of magnetic reconnection.

By comparing pulsed jets with di†erent pulse amplitudes
we Ðnd a number of features of the Ñow which are directly
dependent on the pulse amplitude. These include the time
and location of shock formation, the rate of rarefaction
between internal working surfaces, and the postshock tem-
peratures and pressures during the collision of internal
working surfaces with the terminal shock, to name a few.
Generally speaking, the increased pulse amplitude shortens
the timescale on which processes occur. It is interesting in
this situation to ask what change we might expect if the jet
pulsation amplitude and period varied with time. It is likely
that the long-term evolution of the jet beam would show
predominantly the features associated with the long time-
scales. That is, we expect weak, fast moving internal
working surfaces to pass through stronger, slower moving
internal working surfaces in the same way that the internal
working surfaces studied in this work pass through the ter-
minal shock, or jet shock.

Finally, the most important result we Ðnd is the existence
of numerous reconnection sites in the Ñow. While it is not
clear how the existence of reconnection would change in
helical Ðelds, our simulations show that the existence of a B

zcomponent when coupled to the dynamics of shocks in jets
naturally leads to conditions favorable for reconnection.
Further work needs to be done to determine what role this
will play in the energetics and, more importantly, the evolu-
tion of Ðeld topologies in the jet. Our simulations show that
purely axial Ðelds do not alter the propagation character-
istics of the jets signiÐcantly. In Frank et al. (1998) and
Cerqueira et al. (1997) it was shown that toroidal Ðelds can
have strong e†ects on the propagation characteristics
leading to nose-cone morphologies. If such shapes do not
occur in real jets, it is possible that reconnection is the agent
allowing global changes in the jet Ðeld topologies. We note
also that if instabilities grow faster than cooling timescales
in the Ñow, they can be an important driver for reconnec-
tion.

With the move from two-dimensional cylindrically sym-
metric to threeÈdimensional MHD simulations we can
expect the Ñow patterns in jet simulations to become
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increasingly complicated. The e†ects that this may have on
the rate of magnetic reconnection and the e†ects that recon-
nection may have on the stability of the Ñow are very inter-
esting issues that need to be considered. Of particular
interest would be a self-consistent calculation of the X-ray
luminosity expected from magnetic reconnection.
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