25 research outputs found

    A dualistic model of primary anal canal adenocarcinoma with distinct cellular origins, etiologies, inflammatory microenvironments and mutational signatures: implications for personalised medicine.

    Get PDF
    Primary adenocarcinoma of the anal canal is a rare and aggressive gastrointestinal disease with unclear pathogenesis. Because of its rarity, no clear clinical practice guideline has been defined and a targeted therapeutic armamentarium has yet to be developed. The present article aimed at addressing this information gap by in-depth characterising the anal glandular neoplasms at the histologic, immunologic, genomic and epidemiologic levels. In this multi-institutional study, we first examined the histological features displayed by each collected tumour (n = 74) and analysed their etiological relationship with human papillomavirus (HPV) infection. The intratumoural immune cell subsets (CD4, CD8, Foxp3), the expression of immune checkpoints (PD-1, PD-L1), the defect in mismatch repair proteins and the mutation analysis of multiple clinically relevant genes in the gastrointestinal cancer setting were also determined. Finally, the prognostic significance of each clinicopathological variable was assessed. Phenotypic analysis revealed two region-specific subtypes of anal canal adenocarcinoma. The significant differences in the HPV status, density of tumour-infiltrating lymphocytes, expression of immune checkpoints and mutational profile of several targetable genes further supported the separation of these latter neoplasms into two distinct entities. Importantly, anal gland/transitional-type cancers, which poorly respond to standard treatments, displayed less mutations in downstream effectors of the EGFR signalling pathway (i.e., KRAS and NRAS) and demonstrated a significantly higher expression of the immune inhibitory ligand-receptor pair PD-1/PD-L1 compared to their counterparts arising from the colorectal mucosa. Taken together, the findings reported in the present article reveal, for the first time, that glandular neoplasms of the anal canal arise by HPV-dependent or independent pathways. These etiological differences leads to both individual immune profiles and mutational landscapes that can be targeted for therapeutic benefits

    Nonsense-Mediated mRNA Decay Impacts MSI-Driven Carcinogenesis and Anti-Tumor Immunity in Colorectal Cancers

    Get PDF
    Nonsense-mediated mRNA Decay (NMD) degrades mutant mRNAs containing premature termination codon (PTC-mRNAs). Here we evaluate the consequence of NMD activity in colorectal cancers (CRCs) showing microsatellite instability (MSI) whose progression is associated with the accumulation of PTC-mRNAs encoding immunogenic proteins due to frameshift mutations in coding repeat sequences. Inhibition of UPF1, one of the major NMD factors, was achieved by siRNA in the HCT116 MSI CRC cell line and the resulting changes in gene expression were studied using expression microarrays. The impact of NMD activity was also investigated in primary MSI CRCs by quantifying the expression of several mRNAs relative to their mutational status and to endogenous UPF1 and UPF2 expression. Host immunity developed against MSI cancer cells was appreciated by quantifying the number of CD3ε-positive tumor-infiltrating lymphocytes (TILs). UPF1 silencing led to the up-regulation of 1251 genes in HCT116, among which a proportion of them (i.e. 38%) significantly higher than expected by chance contained a coding microsatellite (P<2×10−16). In MSI primary CRCs, UPF1 was significantly over-expressed compared to normal adjacent mucosa (P<0.002). Our data provided evidence for differential decay of PTC-mRNAs compared to wild-type that was positively correlated to UPF1 endogenous expression level (P = 0.02). A negative effect of UPF1 and UPF2 expression on the host's anti-tumor response was observed (P<0.01). Overall, our results show that NMD deeply influences MSI-driven tumorigenesis at the molecular level and indicate a functional negative impact of this system on anti-tumor immunity whose intensity has been recurrently shown to be an independent factor of favorable outcome in CRCs

    In Reply

    No full text

    MSI/MMR-deficient tumor diagnosis: Which standard for screening and for diagnosis? Diagnostic modalities for the colon and other sites: Differences between tumors

    No full text
    International audienceMicrosatellite instability (MSI), which is caused by deficiency of the DNA mismatch repair (MMR) system, is the molecular abnormality observed in tumors associated with Lynch syndrome. Lynch syndrome represents one of the most frequent conditions of cancer predisposition in human, thus requiring specific care and genetic counseling. Moreover, research has recently focused increasingly on MMR deficiency due to its positive predictive value for the efficacy of immune checkpoints inhibitors (ICKi) in metastatic tumors, regardless of their primary origin. MSI has also been demonstrated to constitute an independent prognostic factor in several tumor types, being also associated with alternative response to chemotherapy. These observations have led many professional medical organizations to recommend universal screening of all newly diagnosed colorectal cancers for dMMR/MSI status and increasing evidence support the evaluation of MSI in all human tumors regardless of the cancer tissue of origin. Currently, two standard reference methods, namely immunohistochemistry and polymerase chain reaction, are recommended for the detection of dMMR/MSI status. These methods are equally valid as the initial screening test for dMMR/MSI in colorectal cancer. To date, there is no recommendation for the detection of dMMR/MSI in other primary tumors. In this review, we will present a comprehensive overview of the methods used for evaluation of tumor dMMR/MSI status in colorectal cancer, as well as in other tumor sites. We will see that the evaluation of this status remains challenging in some clinical settings, with the need to improve the above methods in these specific contexts

    Low temperature isothermal amplification of microsatellites drastically reduces stutter artifact formation and improves microsatellite instability detection in cancer

    No full text
    International audienceMicrosatellites are polymorphic short tandem repeats of 1–6 nucleotides ubiquitously present in the genome that are extensively used in living organisms as genetic markers and in oncology to detect microsatellite instability (MSI). While the standard analysis method of microsatellites is based on PCR followed by capillary electrophoresis, it generates undesirable frameshift products known as ‘stutter peaks’ caused by the polymerase slippage that can greatly complicate the analysis and interpretation of the data. Here we present an easy multiplexable approach replacing PCR that is based on low temperature isothermal amplification using recombinase polymerase amplification (LT-RPA) that drastically reduces and sometimes completely abolishes the formation of stutter artifacts, thus greatly simplifying the calling of the alleles. Using HT17, a mononucleotide DNA repeat that was previously proposed as an optimal marker to detect MSI in tumor DNA, we showed that LT-RPA improves the limit of detection of MSI compared to PCR up to four times, notably for small deletions, and simplifies the identification of the mutant alleles. It was successfully applied to clinical colorectal cancer samples and enabled detection of MSI. This easy-to-handle, rapid and cost-effective approach may deeply improve the analysis of microsatellites in several biological and clinical applications

    Major improvement in the detection of microsatellite instability in colorectal cancer using HSP110 T17 E-ice-COLD-PCR

    No full text
    International audienceEvery colorectal cancer (CRC) patient should be tested for microsatellite instability (MSI) to screen for Lynch syndrome. Evaluation of MSI status involves screening tumor DNA for the presence of somatic deletions in DNA repeats using PCR followed by fragment analysis. While this method may lack sensitivity due to the presence of a high level of germline DNA, which frequently contaminates the core of primary colon tumors, no other method developed to date is capable of modifying the standard PCR protocol to achieve improvement of MSI detection. Here, we describe a new approach developed for the ultra-sensitive detection of MSI in CRC based on E-ice-COLDPCR, using HSP110 T17, a mononucleotide DNA repeat previously proposed as an optimal marker to detect MSI in tumor DNA, and an oligo(dT)(16) LNA blocker probe complementary to wild-type genotypes. The HT17 E-ice-COLD-PCR assay improved MSI detection by 20-200-fold compared with standard PCR using HT17 alone. It presents an analytical sensitivity of 0.1%-0.05% of mutant alleles in wild-type background, thus greatly improving MSI detection in CRC samples highly contaminated with normal DNA. HT17 E-ice-COLD-PCR is a rapid, cost-effective, easy-to-implement, and highly sensitive method, which could significantly improve the detection of MSI in routine clinical testing

    Method to diagnose MSI cancer

    No full text
    The present invention relates to the field of the diagnostic of MSI cancer. In the present work, the inventors evaluated the performance of MSISensor for the detection of MSI in dMMR/MSI mCRC from multi center, prospective patients involved in clinical trials with ICI. The present analyse demonstrated that the FDA-approved NGS-based diagnostic test for identifying MSI in mCRC and nmCRC gave inaccurate results when compared with the gold standard reference methods. Consequently, whole exome sequencing (WES) data from all samples was further analyzed to improve detection of the MSI genomic signal in CRC and other primary tumor types. This allowed them to identify the weaknesses and limits of MSISensor and then to design and validate a newly optimized algorithm, namely MSICare. The high accuracy of MSICare for the detection of MSI in CRC and non-CRC tumors should allow it to become a future reference test for assessing MSI in pan-cancer. Thus, the present invention relates to a method of diagnosing an MSI cancer in a patient in need thereof comprising notably extracting and sequencing DNA from a tumoral sample and if available from a normal sample and operate an analyse of MNRs

    Association of Primary Resistance to Immune Checkpoint Inhibitors in Metastatic Colorectal Cancer With Misdiagnosis of Microsatellite Instability or Mismatch Repair Deficiency Status

    No full text
    International audienceImportance:Primary resistance to immune checkpoint inhibitors is observed in 10% to 40% of patients with metastatic colorectal cancer (mCRC) displaying microsatellite instability (MSI) or defective mismatch repair (dMMR).Objective:To investigate possible mechanisms underlying primary resistance to immune checkpoint inhibitors of mCRC displaying MSI or dMMR.Design, Setting, and Participants:This post hoc analysis of a single-center, prospective cohort included 38 patients with mCRC diagnosed as MSI or dMMR by local laboratories and entered into trials of immune checkpoint inhibitors between January 1, 2015, and December 31, 2016. The accuracy of MSI or dMMR status was also assessed in a retrospective cohort comprising 93 cases of mCRC that were diagnosed as MSI or dMMR between January 1, 1998, and December 31, 2016, in 6 French hospitals. Primary resistance of mCRC was defined as progressive disease according to Response Evaluation Criteria in Solid Tumors criteria, 6 to 8 weeks after initiation of immune checkpoint inhibitors, without pseudo-progression. All tumor samples were reassessed for dMMR status using immunohistochemistry with antibodies directed against MLH1, MSH2, MSH6, and PMS2, and for MSI using polymerase chain reaction with pentaplex markers and with the HSP110 T17 (HT17) repeat.Main Outcomes and Measures:The primary outcome was positive predictive value.Results:Among the 38 patients (15 women and 23 men; mean [SD] age, 55.6 [13.7] years) in the study with mCRC displaying MSI or dMMR, primary resistance to immune checkpoint inhibitors was observed in 5 individuals (13%). Reassessment of the status of MSI or dMMR revealed that 3 (60%) of these 5 resistant tumors were microsatellite stable or displayed proficient mismatch repair. The positive predictive value of MSI or dMMR status assessed by local laboratories was therefore 92.1% (95% CI, 78.5%-98.0%). In the retrospective cohort of 93 patients (44 women and 49 men; mean [SD] age, 56.8 [18.3] years) without immune checkpoint inhibitor treatment, misdiagnosis of the MSI or dMMR status by local assessment was 10% (n = 9), with a positive predictive value of 90.3% (95% CI, 82.4%-95.0%). Testing for MSI with the HT17 assay confirmed the MSI or dMMR status in 2 of 4 cases showing discrepant results between immunohistochemistry and pentaplex polymerase chain reaction (ie, dMMR but microsatellite stable).Conclusions and Relevance:Primary resistance of mCRC displaying MSI or dMMR to immune checkpoint inhibitors is due mainly to misdiagnosis of their MSI or dMMR status. Larger studies are required to confirm these findings. Microsatellite instability or dMMR status should be tested routinely using both immunohistochemistry and polymerase chain reaction methods prior to treatment with immune checkpoint inhibitors
    corecore