25 research outputs found

    Ductular reaction correlates with fibrogenesis but does not contribute to liver regeneration in experimental fibrosis models

    Get PDF
    BACKGROUND AND AIMS: Ductular reaction is a standard component of fibrotic liver tissue but its function is largely unknown. It is supposed to interact with the matrix producing myofibroblasts and compensate the declining regenerative capacity of hepatocytes. The relationship between the extent of fibrosis-ductular reaction, proliferative activity of hepatocytes and ductular reaction were studied sequentially in experimental hepatic fibrosis models. METHODS: Liver fibrosis/cirrhosis was induced in wild type and TGFbeta overproducing transgenic mice by carbon tetrachloride and thioacetamide administration. The effect of thioacetamide was modulated by treatment with imatinib and erlotinib. The extent of ductular reaction and fibrosis was measured by morphometry following cytokeratin 19 immunofluorescent labeling and Picro Sirius staining respectively. The proliferative activity of hepatocytes and ductular reaction was evaluated by BrdU incorporation. The temporal distribution of the parameters was followed and compared within and between different experimental groups. RESULTS: There was a strong significant correlation between the extent of fibrosis and ductular reaction in each experimental group. Although imatinib and erlotinib temporarily decreased fibrosis this effect later disappeared. We could not observe negative correlation between the proliferation of hepatocytes and ductular reaction in any of the investigated models. CONCLUSIONS: The stringent connection between ductular reaction and fibrosis, which cannot be influenced by any of our treatment regimens, suggests that there is a close mutual interaction between them instead of a unidirectional causal relationship. Our results confirm a close connection between DR and fibrogenesis. However, since the two parameters changed together we could not establish a causal relationship and were unable to reveal which was the primary event. The lack of inverse correlation between the proliferation of hepatocytes and ductular reaction questions that ductular reaction can compensate for the failing regenerative activity of hepatocytes. No evidences support the persistent antifibrotic property of imatinib or erlotinib

    Enhancer of zeste homologue 2 (EZH2) is a reliable immunohistochemical marker to differentiate malignant and benign hepatic tumors

    Get PDF
    BACKGROUND: The immunohistochemical demonstration of Enhancer of zeste homologue 2 (EZH2) proved to be a useful marker in several tumor types. It has been described to distinguish reliably hepatocellular carcinomas from liver adenomas and other benign hepatocellular lesions. However, no other types of malignant liver tumors were studied so far. METHODS: To evaluate the diagnostic value of this protein in hepatic tumors we have investigated the presence of EZH2 by immunohistochemistry in hepatocellular carcinomas and other common hepatic tumors.EZH2 expression was examined in 44 hepatocellular carcinomas, 23 cholangiocarcinomas, 31 hepatoblastomas, 16 other childhood tumor types (rhabdomyosarcoma, neuroblastoma, Wilms' tumor and rhabdoid tumor), 17 metastatic liver tumors 24 hepatocellular adenomas, 15 high grade dysplastic nodules, 3 biliary cystadenomas, 3 biliary hamartomas and 3 Caroli's diseases. RESULTS: Most of the malignant liver tumors were positive for EZH2, but neither of the adenomas, cirrhotic/dysplastic nodules, reactive and hamartomatous biliary ductules stained positively. CONCLUSIONS: Our immunostainings confirm that EZH2 is a sensitive marker of hepatocellular carcinoma, but its specificity is very low, since almost all the investigated malignant liver tumors were positive regardless of their histogenesis. Based on these results EZH2 is a sensitive marker of malignancy in hepatic tumors. In routine surgical pathology EZH2 could be most helpful to diagnose cholangiocarcinomas, because as far as we know this is the first marker to distinguish transformed and reactive biliary structures. Although hepatoblastomas also express EZH2, the diagnostic significance of this observation seems to be quite limited whereas, the structurally similar, other blastic childhood tumors are also positive. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1173195902735693

    Mechanisms of vascularization in murine models of primary and metastatic tumor growth

    Get PDF
    Directed capillary ingrowth has long been considered synonymous with tumor vascularization. However, the vasculature of primary tumors and metastases is not necessarily formed by endothelial cell sprouting; instead, malignant tumors can acquire blood vessels via alternative vascularization mechanisms, such as intussusceptive microvascular growth, vessel co-option, and glomeruloid angiogenesis. Importantly, in response to anti-angiogenic therapies, malignant tumors can switch from one vascularization mechanism to another. In this article, we briefly review the biological features of these mechanisms and discuss on their significance in medical oncology

    Origin and Distribution of Connective Tissue and Pericytes Impacting Vascularization in Brain Metastases With Different Growth Patterns

    No full text
    The impact of growth pattern on the distribution of connective tissue and on the vascularization of brain metastases (40 colon, lung and breast carcinoma samples) was analyzed. Most of the cases showed either a "pushing-type" (18/40, mostly colon and lung carcinomas) or a "papillary-type" (19/40, mostly breast carcinomas) growth pattern. There was a striking difference in the growth pattern and vascularization of colon/lung versus breast carcinoma metastases. Pushing-type brain metastases incorporated fewer vessels and accumulated more collagen in the adjacent brain parenchyma, whereas papillary-type brain metastases incorporated more vessels and accumulated collagen in the center of the tumor. We observed duplication of the PDGFRβ-positive pericyte layer accompanied by an increase in the amount of collagen within the vessel walls. The outer layer of pericytes and the collagen was removed from the vessel by invasive activity of the tumors, which occurred either peri- or intratumorally, depending on the growth pattern of the metastasis. Our findings suggest that pericytes are the main source of the connective tissue in brain metastases. Vascularization and connective tissue accumulation of the brain metastases largely depend on the growth pattern of the tumors
    corecore