55 research outputs found
Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces
When a liquid drops impinges a hydrophobic rough surface it can either bounce
off the surface (fakir droplets) or be impaled and strongly stuck on it (Wenzel
droplets). The analysis of drop impact and quasi static ''loading'' experiments
on model microfabricated surfaces allows to clearly identify the forces
hindering the impalement transitions. A simple semi-quantitative model is
proposed to account for the observed relation between the surface topography
and the robustness of fakir non-wetting states. Motivated by potential
applications in microfluidics and in the fabrication of self cleaning surfaces,
we finally propose some guidelines to design robust superhydrophobic surfaces.Comment: 7 pages, 5 figure
Collapse Dynamics of a Homopolymer: Theory and Simulation
We present a scaling theory describing the collapse of a homopolymer chain in
poor solvent. At time t after the beginning of the collapse, the original
Gaussian chain of length N is streamlined to form N/g segments of length R(t),
each containing g ~ t monomers. These segments are statistical quantities
representing cylinders of length R ~ t^{1/2} and diameter d ~ t^{1/4}, but
structured out of stretched arrays of spherical globules. This prescription
incorporates the capillary instability. We compare the time-dependent structure
factor derived for our theory with that obtained from ultra-large-scale
molecular dynamics simulation with explicit solvent. This is the first time
such a detailed comparison of theoretical and simulation predictions of
collapsing chain structure has been attempted. The favorable agreement between
the theoretical and computed structure factors supports the picture of the
coarse-graining process during polymer collapse.Comment: 4 pages, 3 figure
Glassy behavior of a homopolymer from molecular dynamics simulations
We study at- and out-of-equilibrium dynamics of a single homopolymer chain at
low temperature using molecular dynamics simulations. The main quantities of
interest are the average root mean square displacement of the monomers below
the theta point, and the structure factor, as a function of time. The
observation of these quantities show a close resemblance to those measured in
structural glasses and suggest that the polymer chain in its low temperature
phase is in a glassy phase, with its dynamics dominated by traps. In
equilibrium, at low temperature, we observe the trapping of the monomers and a
slowing down of the overall motion of the polymer as well as non-exponential
relaxation of the structure factor. In out-of-equilibrium, at low temperatures,
we compute the two-time quantities and observe breaking of ergodicity in a
range of waiting times, with the onset of aging.Comment: 11 pages, 4 figure
Mathematical description of bacterial traveling pulses
The Keller-Segel system has been widely proposed as a model for bacterial
waves driven by chemotactic processes. Current experiments on {\em E. coli}
have shown precise structure of traveling pulses. We present here an
alternative mathematical description of traveling pulses at a macroscopic
scale. This modeling task is complemented with numerical simulations in
accordance with the experimental observations. Our model is derived from an
accurate kinetic description of the mesoscopic run-and-tumble process performed
by bacteria. This model can account for recent experimental observations with
{\em E. coli}. Qualitative agreements include the asymmetry of the pulse and
transition in the collective behaviour (clustered motion versus dispersion). In
addition we can capture quantitatively the main characteristics of the pulse
such as the speed and the relative size of tails. This work opens several
experimental and theoretical perspectives. Coefficients at the macroscopic
level are derived from considerations at the cellular scale. For instance the
stiffness of the signal integration process turns out to have a strong effect
on collective motion. Furthermore the bottom-up scaling allows to perform
preliminary mathematical analysis and write efficient numerical schemes. This
model is intended as a predictive tool for the investigation of bacterial
collective motion
Early Stages of Homopolymer Collapse
Interest in the protein folding problem has motivated a wide range of
theoretical and experimental studies of the kinetics of the collapse of
flexible homopolymers. In this Paper a phenomenological model is proposed for
the kinetics of the early stages of homopolymer collapse following a quench
from temperatures above to below the theta temperature. In the first stage,
nascent droplets of the dense phase are formed, with little effect on the
configurations of the bridges that join them. The droplets then grow by
accreting monomers from the bridges, thus causing the bridges to stretch.
During these two stages the overall dimensions of the chain decrease only
weakly. Further growth of the droplets is accomplished by the shortening of the
bridges, which causes the shrinking of the overall dimensions of the chain. The
characteristic times of the three stages respectively scale as the zeroth, 1/5
and 6/5 power of the the degree of polymerization of the chain.Comment: 11 pages, 3 figure
Modeling E. coli Tumbles by Rotational Diffusion. Implications for Chemotaxis
The bacterium Escherichia coli in suspension in a liquid medium swims by a succession of runs and tumbles, effectively describing a random walk. The tumbles randomize incompletely, i.e. with a directional persistence, the orientation taken by the bacterium. Here, we model these tumbles by an active rotational diffusion process characterized by a diffusion coefficient and a diffusion time. In homogeneous media, this description accounts well for the experimental reorientations. In shallow gradients of nutrients, tumbles are still described by a unique rotational diffusion coefficient. Together with an increase in the run length, these tumbles significantly contribute to the net chemotactic drift via a modulation of their duration as a function of the direction of the preceding run. Finally, we discuss the limits of this model in propagating concentration waves characterized by steep gradients. In that case, the effective rotational diffusion coefficient itself varies with the direction of the preceding run. We propose that this effect is related to the number of flagella involved in the reorientation process
Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms
Shape-changing materials open an entirely new solution space for a wide range of disciplines: from architecture that responds to the environment and medical devices that unpack inside the body, to passive sensors and novel robotic actuators. While synthetic shape-changing materials are still in their infancy, studies of biological morphing materials have revealed key paradigms and features which underlie efficient natural shape-change. Here, we review some of these insights and how they have been, or may be, translated to artificial solutions. We focus on soft matter due to its prevalence in nature, compatibility with users and potential for novel design. Initially, we review examples of natural shape-changing materials—skeletal muscle, tendons and plant tissues—and compare with synthetic examples with similar methods of operation. Stimuli to motion are outlined in general principle, with examples of their use and potential in manufactured systems. Anisotropy is identified as a crucial element in directing shape-change to fulfil designed tasks, and some manufacturing routes to its achievement are highlighted. We conclude with potential directions for future work, including the simultaneous development of materials and manufacturing techniques and the hierarchical combination of effects at multiple length scales.</p
“Čerenkov” dewetting at soft interfaces
A non-wetting liquid is pressed between a rubber cap and a solid
plate. When the plate slides at a velocity U larger than a
critical value U_{\ab{c}}, the contact is lubricated. However,
if the sliding surface carries a nucleating centre (a local
depression), a “dry wake” can be induced, with a well-defined
wake angle , as in Čerenkov radiation. We
interpret this by a competition between a dewetting velocity
V_{\ab{d}} and an invasion velocity U. The Mach relation \sin
\alpha_{0}=V_{\ab{d}}/U is obeyed. These effects are relevant to
the hydroplaning of cars on wet roads
Vibrated sessile drops: Transition between pinned and mobile contact line oscillations
We study the effects of vertical vibrations on non-wetting large water sessile drops flattened by gravity. The solid substrate is characterized by a finite contact angle hysteresis (10-15 degrees). By varying the frequency and the amplitude of the vertical displacement, we observe two types of oscillations. At low amplitude, the contact line remains pinned and the drop presents eigen modes at different resonance frequencies. At higher amplitude, the contact line moves: it remains circular but its radius oscillates at the excitation frequency. The transition between these two regimes arises when the variations of contact angle exceed the contact angle hysteresis. We interpret different features of these oscillations, such as the decrease of the resonance frequencies at larger vibration amplitudes. The hysteresis acts as “solid” friction on the contour oscillations, and gives rise to a stick-slip regime at intermediate amplitude
Vibrations of sessile drops
This study focuses on the effects of vertical vibrations on sessile drops deposited on hydrophobic substrates. At low amplitudes the contact line remains pinned because of contact angle hysteresis and only drop surface modes are observed. Above a first threshold the contact line starts to move and exhibits a stick-slip behavior that presents some analogies with the solid friction on a mechanical oscillator. At larger amplitudes, non-axisymmetric contour modes show up (modes m=2, 3...). They can be interpreted as a coupling between surface modes and contact line motion. These subharmonic modes are well described within the framework of parametric oscillators. We also discuss here why vibrations can help to measure equilibrium contact angle
- …