39 research outputs found

    Ultrafast photodoping and effective Fermi-Dirac distribution of the Dirac particles in Bi2Se3

    Full text link
    We exploit time- and angle- resolved photoemission spectroscopy to determine the evolution of the out-of-equilibrium electronic structure of the topological insulator Bi2Se. The response of the Fermi-Dirac distribution to ultrashort IR laser pulses has been studied by modelling the dynamics of the hot electrons after optical excitation. We disentangle a large increase of the effective temperature T* from a shift of the chemical potential mu*, which is consequence of the ultrafast photodoping of the conduction band. The relaxation dynamics of T* and mu* are k-independent and these two quantities uniquely define the evolution of the excited charge population. We observe that the energy dependence of the non-equilibrium charge population is solely determined by the analytical form of the effective Fermi-Dirac distribution.Comment: 5 Pages, 3 Figure

    Atomic and Electronic Structure of a Rashba pp-nn Junction at the BiTeI Surface

    Get PDF
    The non-centrosymmetric semiconductor BiTeI exhibits two distinct surface terminations that support spin-split Rashba surface states. Their ambipolarity can be exploited for creating spin-polarized pp-nn junctions at the boundaries between domains with different surface terminations. We use scanning tunneling microscopy/spectroscopy (STM/STS) to locate such junctions and investigate their atomic and electronic properties. The Te- and I-terminated surfaces are identified owing to their distinct chemical reactivity, and an apparent height mismatch of electronic origin. The Rashba surface states are revealed in the STS spectra by the onset of a van Hove singularity at the band edge. Eventually, an electronic depletion is found on interfacial Te atoms, consistent with the formation of a space charge area in typical pp-nn junctions.Comment: 5 pages, 4 figure

    Ultrafast Optical Control of the Electronic Properties of ZrTe5ZrTe_5

    Get PDF
    We report on the temperature dependence of the ZrTe5ZrTe_5 electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band structure across the Fermi energy on the sample temperature. This finding is regarded as the dominant mechanism responsible for the anomalous resistivity observed at T* \sim 160 K along with the change of the charge carrier character from holelike to electronlike. Having addressed these long-lasting questions, we prove the possibility to control, at the ultrashort time scale, both the binding energy and the quasiparticle lifetime of the valence band. These experimental evidences pave the way for optically controlling the thermoelectric and magnetoelectric transport properties of ZrTe5ZrTe_5

    Evidence of reduced surface electron-phonon scattering in the conduction band of Bi_{2}Se_{3} by non-equilibrium ARPES

    Full text link
    The nature of the Dirac quasiparticles in topological insulators calls for a direct investigation of the electron-phonon scattering at the \emph{surface}. By comparing time-resolved ARPES measurements of the TI Bi_{2}Se_{3} with different probing depths we show that the relaxation dynamics of the electronic temperature of the conduction band is much slower at the surface than in the bulk. This observation suggests that surface phonons are less effective in cooling the electron gas in the conduction band.Comment: 5 pages, 3 figure

    The momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X = I, Br, Cl)

    Get PDF
    Bulk Rashba systems BiTeX (X = I, Br, Cl) are emerging as important candidates for developing spintronics devices, because of the coexistence of spin-split bulk and surface states, along with the ambipolar character of the surface charge carriers. The need of studying the spin texture of strongly spin-orbit coupled materials has recently promoted circular dichroic Angular Resolved Photoelectron Spectroscopy (cd-ARPES) as an indirect tool to measure the spin and the angular degrees of freedom. Here we report a detailed photon energy dependent study of the cd-ARPES spectra in BiTeX (X = I, Br and Cl). Our work reveals a large variation of the magnitude and sign of the dichroism. Interestingly, we find that the dichroic signal modulates differently for the three compounds and for the different spin-split states. These findings show a momentum and photon energy dependence for the cd-ARPES signals in the bulk Rashba semiconductor BiTeX (X = I, Br, Cl). Finally, the outcome of our experiment indicates the important relation between the modulation of the dichroism and the phase differences between the wave-functions involved in the photoemission process. This phase difference can be due to initial or final state effects. In the former case the phase difference results in possible interference effects among the photo-electrons emitted from different atomic layers and characterized by entangled spin-orbital polarized bands. In the latter case the phase difference results from the relative phases of the expansion of the final state in different outgoing partial waves.Comment: 6 pages, 4 figure

    Giant ambipolar Rashba effect in a semiconductor: BiTeI

    Full text link
    We observe a giant spin-orbit splitting in bulk and surface states of the non-centrosymmetric semiconductor BiTeI. We show that the Fermi level can be placed in the valence or in the conduction band by controlling the surface termination. In both cases it intersects spin-polarized bands, in the corresponding surface depletion and accumulation layers. The momentum splitting of these bands is not affected by adsorbate-induced changes in the surface potential. These findings demonstrate that two properties crucial for enabling semiconductor-based spin electronics -- a large, robust spin splitting and ambipolar conduction -- are present in this material.Comment: 4 pages, 3 figure

    Momentum resolved spin dynamics of bulk and surface excited states in the topological insulator Bi2Se3\mathrm{Bi_{2}Se_{3}}

    Full text link
    The prospective of optically inducing a spin polarized current for spintronic devices has generated a vast interest in the out-of-equilibrium electronic and spin structure of topological insulators (TIs). In this Letter we prove that only by measuring the spin intensity signal over several order of magnitude in spin, time and angle resolved photoemission spectroscopy (STAR-PES) experiments is it possible to comprehensively describe the optically excited electronic states in TIs materials. The experiments performed on Bi2Se3\mathrm{Bi_{2}Se_{3}} reveal the existence of a Surface-Resonance-State in the 2nd bulk band gap interpreted on the basis of fully relativistic ab-initio spin resolved photoemission calculations. Remarkably, the spin dependent relaxation of the hot carriers is well reproduced by a spin dynamics model considering two non-interacting electronic systems, derived from the excited surface and bulk states, with different electronic temperatures.Comment: 5 pages and 4 figure

    Radial Spin Texture of the Weyl Fermions in Chiral Tellurium

    Get PDF
    Trigonal tellurium, a small-gap semiconductor with pronounced magneto-electric and magneto-optical responses, is among the simplest realizations of a chiral crystal. We have studied by spin- and angle-resolved photoelectron spectroscopy its unconventional electronic structure and unique spin texture. We identify Kramers–Weyl, composite, and accordionlike Weyl fermions, so far only predicted by theory, and show that the spin polarization is parallel to the wave vector along the lines in k space connecting high-symmetry points. Our results clarify the symmetries that enforce such spin texture in a chiral crystal, thus bringing new insight in the formation of a spin vectorial field more complex than the previously proposed hedgehog configuration. Our findings thus pave the way to a classification scheme for these exotic spin textures and their search in chiral crystals

    Bulk and surface band structure of the new family of semiconductors BiTeX (X=I, Br, Cl)

    Get PDF
    We present an overview of the new family of semiconductors BiTeX (X = I, Br, Cl) from the perspective of angle resolved photoemission spectroscopy. The strong band bending occurring at the surface potentially endows them with a large flexibility, as they are capable of hosting both hole and electron conduction, and can be modified by inclusion or adsorption of foreign atoms. In addition, their trigonal crystal structure lacks a center of symmetry and allows for both bulk and surface spin-split bands at the Fermi level. We elucidate analogies and differences among the three materials, also in the light of recent theoretical and experimental work
    corecore