325 research outputs found

    The Role of Vasospasm and Microcirculatory Dysfunction in Fluoropyrimidine-Induced Ischemic Heart Disease

    Get PDF
    Cardiovascular diseases and cancer are the leading cause of morbidity and mortality globally. Cardiotoxicity from chemotherapeutic agents results in substantial morbidity and mortality in cancer survivors and patients with active cancer. Cardiotoxicity induced by 5-fluorouracil (5-FU) has been well established, yet its incidence, mechanisms, and manifestation remain poorly defined. Ischemia secondary to coronary artery vasospasm is thought to be the most frequent cardiotoxic effect of 5-FU. The available evidence of 5-FU-induced epicardial coronary artery spasm and coronary microvascular dysfunction suggests that endothelial dysfunction or primary vascular smooth muscle dysfunction (an endothelial-independent mechanism) are the possible contributing factors to this form of cardiotoxicity. In patients with 5-FU-related coronary artery vasospasm, termination of chemotherapy and administration of nitrates or calcium channel blockers may improve ischemic symptoms. However, there are variable results after administration of nitrates or calcium channel blockers in patients treated with 5-FU presumed to have myocardial ischemia, suggesting mechanisms other than impaired vasodilatory response. Clinicians should investigate whether chest pain and ECG changes can reasonably be attributed to 5-FU-induced cardiotoxicity. More prospective data and clinical randomized trials are required to understand and mitigate potentially adverse outcomes from 5-FU-induced cardiotoxicity

    Mitochondrial Strokes: Diagnostic Challenges and Chameleons

    Get PDF
    Mitochondrial stroke-like episodes (SLEs) are a hallmark of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). They should be suspected in anyone with an acute/subacute onset of focal neurological symptoms at any age and are usually driven by seizures. Suggestive features of an underlying mitochondrial pathology include evolving MRI lesions, often originating within the posterior brain regions, the presence of multisystemic involvement, including diabetes, deafness, or cardiomyopathy, and a positive family history. The diagnosis of MELAS has important implications for those affected and their relatives, given it enables early initiation of appropriate treatment and genetic counselling. However, the diagnosis is frequently challenging, particularly during the acute phase of an event. We describe four cases of mitochondrial strokes to highlight the considerable overlap that exists with other neurological disorders, including viral and autoimmune encephalitis, ischemic stroke, and central nervous system (CNS) vasculitis, and discuss the clinical, laboratory, and imaging features that can help distinguish MELAS from these differential diagnoses

    Overexpression of CUGBP1 in skeletal muscle from adult classic myotonic dystrophy type 1 but not from myotonic dystrophy type 2

    Get PDF
    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are progressive multisystemic disorders caused by similar mutations at two different genetic loci. The common key feature of DM pathogenesis is nuclear accumulation of mutant RNA which causes aberrant alternative splicing of specific pre-mRNAs by altering the functions of two RNA binding proteins, MBNL1 and CUGBP1. However, DM1 and DM2 show disease-specific features that make them clearly separate diseases suggesting that other cellular and molecular pathways may be involved. In this study we have analysed the histopathological, and biomolecular features of skeletal muscle biopsies from DM1 and DM2 patients in relation to presenting phenotypes to better define the molecular pathogenesis. Particularly, the expression of CUGBP1 protein has been examined to clarify if this factor may act as modifier of disease-specific manifestations in DM. The results indicate that the splicing and muscle pathological alterations observed are related to the clinical phenotype both in DM1 and in DM2 and that CUGBP1 seems to play a role in classic DM1 but not in DM2. In conclusion, our results indicate that multisystemic disease spectrum of DM pathologies may not be explained only by spliceopathy thus confirming that the molecular pathomechanism of DM is more complex than that actually suggested

    Multisystem mitochondrial disease caused by a rare m.10038G>A mitochondrial tRNAGly (MT-TG) variant

    Get PDF
    Most pathogenic mitochondrial DNA (mtDNA) variants occur in the 22 mtDNA-encoded tRNA (mt-tRNA) genes. However, despite more than 270 reported mt-tRNA gene mutations, only 5 reside within mt-tRNAGly (MT-TG). We report a rare MT-TG variant and evaluate this, in addition to all previously reported MT-TG variants, against the published criteria used to help determine the pathogenicity of the mt-tRNA variants

    Enhanced mitochondrial genome analysis: bioinformatic and long-read sequencing advances and their diagnostic implications

    Get PDF
    Introduction: Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. Areas covered: In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. Expert opinion: We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants

    Delayed Care and Mortality Among Women and Men with Myocardial Infarction

    Get PDF
    Background-Women with ST-segment-elevation myocardial infarction (STEMI) have higher mortality rates than men. We investigated whether sex-related differences in timely access to care among STEMI patients may be a factor associated with excess risk of early mortality in women. Methods and Results-We identified 6022 STEMI patients who had information on time of symptom onset to time of hospital presentation at 41 hospitals participating in the ISACS-TC (International Survey of Acute Coronary Syndromes in Transitional Countries) registry (NCT01218776) from October 2010 through April 2016. Patients were stratified into time-delay cohorts. We estimated the 30-day risk of all-cause mortality in each cohort. Despite similar delays in seeking care, the overall time from symptom onset to hospital presentation was longer for women than men (median: 270 minutes [range: 130-776] versus 240 minutes [range: 120-600]). After adjustment for baseline variables, female sex was independently associated with greater risk of 30-day mortality (odds ratio: 1.58; 95% confidence interval, 1.27-1.97). Sex differences in mortality following STEMI were no longer observed for patients having delays from symptom onset to hospital presentation of (odds ratio: 0.77; 95% confidence interval, 0.29-2.02). Conclusions-Sex difference in mortality following STEMI persists and appears to be driven by prehospital delays in hospital presentation. Women appear to be more vulnerable to prolonged untreated ischemia

    Utility of Whole Blood Thiamine Pyrophosphate Evaluation in TPK1-Related Diseases

    Get PDF
    TPK1 mutations are a rare, but potentially treatable, cause of thiamine deficiency. Diagnosis is challenging given the phenotypic overlap that exists with other metabolic and neurological disorders. We report a case of TPK1-related disease presenting with Leigh-like syndrome and review the diagnostic utility of thiamine pyrophosphate (TPP) blood measurement. The proband, a 35-year-old male, presented at four months of age with recurrent episodes of post-infectious encephalopathy. He subsequently developed epilepsy, learning difficulties, sensorineural hearing loss, spasticity, and dysphagia. There was a positive family history for Leigh syndrome in an older brother. Plasma lactate was elevated (3.51 mmol/L) and brain MRI showed bilateral basal ganglia hyperintensities, indicative of Leigh syndrome. Histochemical and spectrophotometric analysis of mitochondrial respiratory chain complexes I, II+III, and IV was normal. Genetic analysis of muscle mitochondrial DNA was negative. Whole exome sequencing of the proband confirmed compound heterozygous variants in TPK1: c. 426G>C (p. Leu142Phe) and c. 258+1G>A (p.?). Blood TPP levels were reduced, providing functional evidence for the deleterious effects of the variants. We highlight the clinical and bioinformatics challenges to diagnosing rare genetic disorders and the continued utility of biochemical analyses, despite major advances in DNA sequencing technology, when investigating novel, potentially disease-causing, genetic variants. Blood TPP measurement represents a fast and cost-effective diagnostic tool in TPK1-related diseases

    Multisystem mitochondrial disease caused by a rare m.10038G>A mitochondrial tRNA Gly ( MT-TG ) variant

    Get PDF
    Most pathogenic mitochondrial DNA (mtDNA) variants occur in the 22 mtDNA-encoded tRNA (mt-tRNA) genes. However, despite more than 270 reported mt-tRNA gene mutations, only 5 reside within mt-tRNAGly (MT-TG).1 We report a rare MT-TG variant and evaluate this, in addition to all previously reported MT-TG variants, against the published criteria used to help determine the pathogenicity of the mt-tRNA variants.
    corecore