137 research outputs found

    Creatine supplementation post-exercise does not enhance training-induced adaptations in middle to older aged males

    Get PDF
    PURPOSE: The present study evaluated the effects of creatine monohydrate (CrM) consumption post-exercise on body composition and muscle strength in middle to older males following a 12-week resistance training program. METHODS: In a double-blind, randomized trial, 20 males aged between 55 and 70 years were randomly assigned to consume either CrM-carbohydrate (CHO) [20 g days(−1) CrM + 5 g days(−1) CHO × 7 days, then 0.1 g kg(−1) CrM + 5 g CHO on training days (average dosage of ~8.8 g)] or placebo CHO (20 g days(−1) CHO × 7 days, then 5 g CHO on training days) while participating in a high intensity resistance training program [3 sets × 10 repetitions at 75 % of 1 repetition maximum (1RM)], 3 days weeks(−1) for 12 weeks. Following the initial 7-day “loading” phase, participants were instructed to ingest their supplement within 60 min post-exercise. Body composition and muscle strength measurements, blood collection and vastus lateralis muscle biopsy were completed at 0, 4, 8 and 12 weeks of the supplement and resistance training program. RESULTS: A significant time effect was observed for 1RM bench press (p = 0.016), leg press (p = 0.012), body mass (p = 0.03), fat-free mass (p = 0.005) and total myofibrillar protein (p = 0.005). A trend for larger muscle fiber cross-sectional area in the type II fibers compared to type I fibers was observed following the 12-week resistance training (p = 0.08). No supplement interaction effects were observed. CONCLUSION: Post-exercise ingestion of creatine monohydrate does not provide greater enhancement of body composition and muscle strength compared to resistance training alone in middle to older males

    Nine weeks of supplementation with a multi-nutrient product augments gains in lean mass, strength, and muscular performance in resistance trained men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to compare the effects of supplementation with Gaspari Nutrition's SOmaxP Maximum Performance™ (SOmaxP) versus a comparator product (CP) containing an equal amount of creatine (4 g), carbohydrate (39 g maltodextrin), and protein (7 g whey protein hydrolysate) on muscular strength, muscular endurance, and body composition during nine weeks of intense resistance training.</p> <p>Methods</p> <p>Using a prospective, randomized, double-blind design, 20 healthy men (mean ± SD age, height, weight, % body fat: 22.9 ± 2.6 y, 178.4 ± 5.7 cm, 80.5 ± 6.6 kg, 16.6 ± 4.0%) were matched for age, body weight, resistance training history, bench press strength, bench press endurance, and percent body fat and then randomly assigned via the ABBA procedure to ingest 1/2 scoop (dissolved in 15 oz water) of SOmaxP or CP prior to, and another 1/2 scoop (dissolved in 15 oz water) during resistance exercise. Body composition (DEXA), muscular performance (1-RM bench press and repetitions to failure [RTF: 3 sets × baseline body weight, 60-sec rest between sets]), and clinical blood chemistries were measured at baseline and after nine weeks of supplementation and training. Subjects were required to maintain their normal dietary habits and follow a specific, progressive overload resistance training program (4-days/wk, upper body/lower body split) during the study. An intent-to-treat approach was used and data were analyzed via ANCOVA using baseline values as the covariate. Statistical significance was set <it>a priori </it>at p ≤ 0.05.</p> <p>Results</p> <p>When adjusted for initial differences, significant between group post-test means were noted in: 1-RM bench press (SOmaxP: 133.3 ± 1.3 kg [19.8% increase] vs. CP: 128.5 ± 1.3 kg [15.3% increase]; p < 0.019); lean mass (SOmaxP: 64.1 ± 0.4 kg [2.4% increase] vs. 62.8 ± 0.4 kg [0.27% increase], p < 0.049); RTF (SOmaxP: 33.3 ± 1.1 reps [44.8% increase] vs. 27.8 ± 1.1 reps [20.9% increase], p < 0.004); and fat mass (SOmaxP: 12.06 ± 0.53 kg [9.8% decrease] vs. 13.90 ± 0.53 kg [4.1% increase], p < 0.024). No statistically significant differences in vital signs (heart rate, systolic and diastolic blood pressures) or clinical blood chemistries were noted.</p> <p>Conclusions</p> <p>These data indicate that compared to CP, SOmaxP administration augments and increases gains in lean mass, bench press strength, and muscular performance during nine weeks of intense resistance training. Studies designed to confirm these results and clarify the molecular mechanisms by which SOmaxP exerts the observed salutary effects have begun. Both SOmaxP and the CP were well-tolerated, and no supplement safety issues were identified.</p

    Skeletal Muscle Apoptotic Signaling Predicts Thigh Muscle Volume and Gait Speed in Community-Dwelling Older Persons: An Exploratory Study

    Get PDF
    Preclinical studies strongly suggest that accelerated apoptosis in skeletal myocytes may be involved in the pathogenesis of sarcopenia. However, evidence in humans is sparse. In the present study, we investigated whether apoptotic signaling in the skeletal muscle was associated with indices of muscle mass and function in older persons.Community-dwelling older adults were categorized into high-functioning (HF) or low-functioning (LF) groups according to their short physical performance battery (SPPB) summary score. Participants underwent an isokinetic knee extensor strength test and 3-dimensional magnetic resonance imaging of the thigh. Vastus lateralis muscle samples were obtained by percutaneous needle biopsy and assayed for the expression of a set of apoptotic signaling proteins. Age, sex, number of comorbid conditions and medications as well as knee extensor strength were not different between groups. HF participants displayed greater thigh muscle volume compared with LF persons. Multivariate partial least squares (PLS) regressions showed significant correlations between caspase-dependent apoptotic signaling proteins and the muscular percentage of thigh volume (R(2) = 0.78; Q(2) = 0.61) as well as gait speed (R(2) = 0.81; Q(2) = 0.56). Significant variables in the PLS model of percent muscle volume were active caspase-8, cleaved caspase-3, cytosolic cytochrome c and mitochondrial Bak. The regression model of gait speed was mainly described by cleaved caspase-3 and mitochondrial Bax and Bak. PLS predictive apoptotic variables did not differ between functional groups. No correlation was determined between apoptotic signaling proteins and muscle strength or quality (strength per unit volume).Data from this exploratory study show for the first time that apoptotic signaling is correlated with indices of muscle mass and function in a cohort of community-dwelling older persons. Future larger-scale studies are needed to corroborate these preliminary findings and determine if down-regulation of apoptotic signaling in skeletal myocytes will provide improvements in the muscle mass and functional status of older persons

    Strength and hypertrophy responses to constant and decreasing rest intervals in trained men using creatine supplementation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of the current study was to compare strength and hypertrophy responses to resistance training programs that instituted constant rest intervals (CI) and decreasing rest intervals (DI) between sets over the course of eight weeks by trained men who supplemented with creatine monohydrate (CR).</p> <p>Methods</p> <p>Twenty-two recreationally trained men were randomly assigned to a CI group (n = 11; 22.3 ± 1 years; 77.7 ± 5.4 kg; 180 ± 2.2 cm) or a DI group (n = 11; 22 ± 2.5 years; 75.8 ± 4.9 kg; 178.8 ± 3.4 cm). Subjects in both groups supplemented with CR; the only difference between groups was the rest interval instituted between sets; the CI group used 2 minutes rest intervals between sets and exercises for the entire 8-weeks of training, while the DI group started with a 2 minute rest interval the first two weeks; after which the rest interval between sets was decreased 15 seconds per week (i.e. 2 minutes decreasing to 30 seconds between sets). Pre- and post-intervention maximal strength for the free weight back squat and bench press exercises and isokinetic peak torque were assessed for the knee extensors and flexors. Additionally, muscle cross-sectional area (CSA) of the right thigh and upper arm was measured using magnetic resonance imaging.</p> <p>Results</p> <p>Both groups demonstrated significant increases in back squat and bench press maximal strength, knee extensor and flexor isokinetic peak torque, and upper arm and right thigh CSA from pre- to post-training (p ≤ 0.0001); however, there were no significant differences between groups for any of these variables. The total volume for the bench press and back squat were significantly greater for CI group versus the DI group.</p> <p>Conclusions</p> <p>We report that the combination of CR supplementation and resistance training can increase muscular strength, isokinetic peak torque, and muscle CSA, irrespective of the rest interval length between sets. Because the volume of training was greater for the CI group versus the DI group, yet strength gains were similar, the creatine supplementation appeared to bolster adaptations for the DI group, even in the presence of significantly less volume. However, further research is needed with the inclusion of a control group not receiving supplementation combined and resistance training with decreasing rest intervals to further elucidate such hypotheses.</p

    Heterochronic faecal transplantation boosts gut germinal centres in aged mice

    Get PDF
    Ageing is a complex multifactorial process associated with a plethora of disorders, which contribute significantly to morbidity worldwide. One of the organs significantly affected by age is the gut. Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This change in microbial composition with age occurs in parallel with a decline in function of the gut immune system, however it is not clear if there is a causal link between the two. Here we report that the defective germinal centre reaction in Peyer’s patches of aged mice can be rescued by faecal transfers from younger adults into aged mice and by immunisations with cholera toxin, without affecting germinal centre reactions in peripheral lymph nodes. This demonstrates that the poor germinal centre reaction in aged animals is not irreversible, and that it is possible to improve this response in older individuals by providing appropriate stimuli

    Analysis of the efficacy, safety, and regulatory status of novel forms of creatine

    Get PDF
    Creatine has become one of the most popular dietary supplements in the sports nutrition market. The form of creatine that has been most extensively studied and commonly used in dietary supplements is creatine monohydrate (CM). Studies have consistently indicated that CM supplementation increases muscle creatine and phosphocreatine concentrations by approximately 15–40%, enhances anaerobic exercise capacity, and increases training volume leading to greater gains in strength, power, and muscle mass. A number of potential therapeutic benefits have also been suggested in various clinical populations. Studies have indicated that CM is not degraded during normal digestion and that nearly 99% of orally ingested CM is either taken up by muscle or excreted in urine. Further, no medically significant side effects have been reported in literature. Nevertheless, supplement manufacturers have continually introduced newer forms of creatine into the marketplace. These newer forms have been purported to have better physical and chemical properties, bioavailability, efficacy, and/or safety profiles than CM. However, there is little to no evidence that any of the newer forms of creatine are more effective and/or safer than CM whether ingested alone and/or in combination with other nutrients. In addition, whereas the safety, efficacy, and regulatory status of CM is clearly defined in almost all global markets; the safety, efficacy, and regulatory status of other forms of creatine present in today’s marketplace as a dietary or food supplement is less clear
    corecore