24 research outputs found

    Color entanglement for azimuthal asymmetries in the Drell-Yan process

    Full text link
    In the resummation of collinear gluons emitted together with active partons from the hadrons in the Drell-Yan process (DY) effects of color entanglement become important when the transverse directions are taken into account. It is then no longer possible to write the cross section as the convolution of two soft correlators and a hard part. We show that the color entanglement introduces additional color factors that must be taken into account in the extraction of transverse momentum dependent parton distribution functions (TMD PDFs) from azimuthal asymmetries. Examples where such effects matter are the extraction of the double Sivers and double Boer-Mulders asymmetries. Furthermore, we will argue why this color entanglement is a basic ingredient already in the tree-level description of azimuthal asymmetries.Comment: 5 pages, minor corrections and updated reference

    Universality of TMD distribution functions of definite rank

    Get PDF
    Transverse momentum dependent (TMD) distribution and fragmentation functions are described as Fourier transforms of matrix elementscontaining nonlocal combinations of quark and gluon fields. These matrix elements also contain a gauge link operator with a process dependent path, of which the process dependence that can be traced back to the color flow in the process. Expanding into irreducible tensors built from the transverse momenta p_\st, we can define a universal set of TMD correlators of definite rank with a well-defined operator structure.Comment: 6 pages, to be published in proceedings of the Third Worshop on the QCD Structure of the Nucleon (QCD N'12), Bilbao, Spain, 22-26 October 201

    Universality of TMD correlators

    Full text link
    In a high-energy scattering process with hadrons in the initial state, color is involved. Transverse momentum dependent distribution functions (TMDs) describe the quark and gluon distributions in these hadrons in momentum space with the inclusion of transverse directions. Apart from the (anti)-quarks and gluons that are involved in the hard scattering process, additional gluon emissions by the hadrons have to be taken into account as well, giving rise to Wilson lines or gauge links. The TMDs involved are sensitive to the process under consideration and hence potentially nonuniversal due to these Wilson line interactions with the hard process; different hard processes give rise to different Wilson line structures. We will show that in practice only a finite number of universal TMDs have to be considered, which come in different linear combinations depending on the hard process under consideration, ensuring a generalized universality. For quarks this gives rise to three Pretzelocity functions, whereas for gluons a richer structure of functions arises.Comment: 6 pages, presented by the first author at the 4th International Workshop on Transverse Polarization Phenomena in Hard Processes (Transversity 2014), June 9-13, 2014, Chia, Italy. To appear in EPJ Web of Conference

    Generalized Universality for TMD Distribution Functions

    Full text link
    Azimuthal asymmetries in high-energy processes, most pronounced showing up in combination with single or double (transverse) spin asymmetries, can be understood with the help of transverse momentum dependent (TMD) parton distribution and fragmentation functions. These appear in correlators containing expectation values of quark and gluon operators. TMDs allow access to new operators as compared to collinear (transverse momentum integrated) correlators. These operators include nontrivial process dependent Wilson lines breaking universality for TMDs. Making an angular decomposition in the azimuthal angle, we define a set of universal TMDs of definite rank, which appear with process dependent gluonic pole factors in a way similar to the sign of T-odd parton distribution functions in deep inelastic scattering or the Drell-Yan process. In particular, we show that for a spin 1/2 quark target there are three pretzelocity functions.Comment: 9 pages, updated references and minor corrections, to appear in the proceedings of the QCD Evolution Workshop 2012 (May 14-17, JLAB

    Operator analysis of pTp_T-widths of TMDs

    Get PDF
    Transverse momentum dependent (TMD) parton distribution functions (PDFs), TMDs for short, are defined as the Fourier transform of matrix elements of nonlocal combinations of quark and gluon fields. The nonlocality is bridged by gauge links, which for TMDs have characteristic paths (future or past pointing), giving rise to a process dependence that breaks universality. It is possible, however, to construct sets of universal TMDs of which in a given process particular combinations are needed with calculable, process-dependent, coefficients. This occurs for both T-odd and T-even TMDs, including also the {\it unpolarized} quark and gluon TMDs. This extends the by now well-known example of T-odd TMDs that appear with opposite sign in single-spin azimuthal asymmetries in semi-inclusive deep inelastic scattering or in the Drell-Yan process. In this paper we analyze the cases where TMDs enter multiplied by products of two transverse momenta, which includes besides the pTp_T-broadening observable, also instances with rank two structures. To experimentally demonstrate the process dependence of the latter cases requires measurements of second harmonic azimuthal asymmetries, while the pTp_T-broadening will require measurements of processes beyond semi-inclusive deep inelastic scattering or the Drell-Yan process. Furthermore, we propose specific quantities that will allow for theoretical studies of the process dependence of TMDs using lattice QCD calculations.Comment: 10 pages, no figures; expanded discussions, matches version accepted by JHE

    Wilson Lines off the Light-cone in TMD PDFs

    Full text link
    Transverse Momentum Dependent (TMD) parton distribution functions (PDFs) also take into account the transverse momentum (pTp_T) of the partons. The pTp_T-integrated analogues can be linked directly to quark and gluon matrix elements using the operator product expansion in QCD, involving operators of definite twist. TMDs also involve operators of higher twist, which are not suppressed by powers of the hard scale, however. Taking into account gauge links that no longer are along the light-cone, one finds that new distribution functions arise. They appear at leading order in the description of azimuthal asymmetries in high-energy scattering processes. In analogy to the collinear operator expansion, we define a universal set of TMDs of definite rank and point out the importance for phenomenology.Comment: 12 pages, presented by the first author at the Light-Cone Conference 2013, May 20-24, 2013, Skiathos, Greece. To be published in Few Body System

    Generalized universality of higher transverse moments of quark transverse momentum dependent correlators

    Get PDF
    The color gauge-invariant transverse momentum dependent (TMD) quark correlators contain process dependent gauge links in the bilocal matrix elements. In this paper, we split these process dependent correlators into universal TMD correlators, which in turn can be parametrized in universal TMD distribution functions. The process dependence is contained in gluonic pole factors, of which the value is determined by the gauge link. The operator structures of the universal TMD correlators are identified using transverse moments. In this paper, specific results for double transverse weighting of quark TMDs are given. In particular, we show that for a spin 1/2 target one has three universal time-reversal even leading `pretzelocity distributions', two of which involve double gluonic pole matrix elements and come with process dependent gluonic pole factors. We generalize the results for single and double weighting to TMD correlators of any specific rank, illustrating it for unpolarized, spin 1/2 and spin 1 targets.Comment: 15 pages, minor corrections and updated reference

    HERAFitter

    Get PDF
    HERAFitter is an open-source package that provides a framework for the determination of the parton distribution functions (PDFs) of the proton and for many different kinds of analyses in Quantum Chromodynamics (QCD). It encodes results from a wide range of experimental measurements in lepton–proton deep inelastic scattering and proton–proton (proton–antiproton) collisions at hadron colliders. These are complemented with a variety of theoretical options for calculating PDF-dependent cross section predictions corresponding to the measurements. The framework covers a large number of the existing methods and schemes used for PDF determination. The data and theoretical predictions are brought together through numerous methodological options for carrying out PDF fits and plotting tools to help to visualise the results. While primarily based on the approach of collinear factorisation, HERAFitter also provides facilities for fits of dipole models and transverse-momentum dependent PDFs. The package can be used to study the impact of new precise measurements from hadron colliders. This paper describes the general structure of HERAFitter and its wide choice of options

    Gauge links for transverse momentum dependent correlators at tree-level

    Get PDF
    In this paper we discuss the incorporation of gauge links in hadronic matrix elements that describe the soft hadronic physics in high energy scattering processes. In this description the matrix elements appear in soft correlators and they contain non-local combinations of quark and gluon fields. In our description we go beyond the collinear approach in which case also the dependence on transverse momenta of partons is taken into consideration. The non-locality in the transverse direction leads to a complex gauge link structure for the full process, in which color is entangled, even at tree-level. We show that at tree-level in a 1-parton unintegrated (1PU) situation, in which only the transverse momentum of one of the initial state hadrons is relevant, one can get a factorized expression involving transverse momentum dependent (TMD) distribution functions. We point out problems at the level of two initial state hadrons, even for relatively simple processes such as Drell-Yan scattering.Comment: 25 pages, corrected typos and updated reference
    corecore