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The color gauge-invariant transverse momentum dependent (TMD) quark correlators contain process

dependent gauge links in the bilocal matrix elements. In this paper, we split these process dependent

correlators into universal TMD correlators, which in turn can be parametrized in universal TMD

distribution functions. The process dependence is contained in gluonic pole factors, of which the value

is determined by the gauge link. The operator structures of the universal TMD correlators are identified

using transverse moments. In this paper, specific results for double transverse weighting of quark TMDs

are given. In particular, we show that for a spin 1=2 target one has three universal time-reversal even

leading ‘‘pretzelocity distributions,’’ two of which involve double gluonic pole matrix elements and come

with process dependent gluonic pole factors. We generalize the results for single and double weighting to

TMD correlators of any specific rank, illustrating it for unpolarized, spin 1=2 and spin 1 targets.
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I. INTRODUCTION

The transverse momentum dependent (TMD) correla-
tors for quarks and gluons include not only the dependence
on the longitudinal momentum fraction x but also the
dependence on the transverse momentum pT of the partons
(quarks or gluons). This enables one to incorporate
spin-momentum correlations. The correlators in turn are
parametrized in terms of parton distribution functions
(PDF) and parton fragmentation functions (PFF). The lead-
ing TMD distribution and fragmentation functions in these
correlators include besides the well-known spin-spin den-
sities that survive in the collinear case (where the trans-
verse momentum is integrated) also spin-orbit densities.
These provide for instance a natural interpretation for
single spin asymmetries observed at high energies. The
correlators are the nonperturbative objects that enter the
description of high-energy scattering processes through a
convolution with the perturbative hard scattering process.
They constitute nonlocal matrix elements of the parton
field operators. Collinear gluons exchanged between the
soft and hard parts are resummed into the nonperturbative
objects and show up as the Wilson lines or color gauge
links that make the correlators gauge-invariant. For TMD
correlators the nonlocality in the operators is in the trans-
verse direction as well as longitudinal (light-like) direc-
tion, and there is no unique way to connect the fields
through the gauge link [1–4]. The link depends on the
process under consideration. In fact, in the case of single

spin asymmetries it is the closing of the gauge link with the
transverse gauge link at light-cone plus or minus infinity
that plays a major role in distinguishing time-reversal even
(T-even) and time-reversal odd (T-odd) TMD distribution
and fragmentation functions [5–7]. To study the
pT-dependence it is convenient to look at the transverse
moments, obtained by weighting the TMD functions with
one or more powers of pT [2,8]. It has been shown in
Ref. [2] that single weighted correlators relevant for differ-
ent azimuthal asymmetries can be expressed in terms of
two collinear correlators, the first one containing a T-even
operator combination and the second one containing a
T-odd combination. The latter involves a quark-quark-
gluon matrix element with vanishing gluon momentum
and is known as the Efremov-Teryaev-Qiu-Sterman or
gluonic pole matrix element [9–14]. This matrix element
appears in cross sections multiplied with a process depen-
dent gluonic pole factor, which depends on the hard part of
the process. Examples of such process dependent T-odd
functions are the Sivers and Boer-Mulders function. The
pT-weighted moment of the fragmentation correlators can
also be divided into two parts similar to distributions, but
here T-odd effects can come also from the fact that one has
complex non-plane wave final states [2]. For fragmentation
the gluonic pole matrix elements vanish and since for a
given transverse moment there is only one specific operator
combination, there is no process dependence [15–19]. This
is for example the situation for the Collins fragmentation
function. Generally, the dependence on the gauge link
complicates the universality properties of TMDs as well
as factorization issues.
In terms of transverse moments, the study of TMD

correlators becomes simpler. There remains a process
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dependence, but this is dealt with by process dependent
gluonic pole factors, that depend on the hard part of the
process. In other words, given a process one already knows
which correlators are important. While single weighted
moments are important for cosð’Þ and sinð’Þ asymmetries,
one needs higher pT-moments for cosðn’Þ or sinðn’Þ
asymmetries. For double weighted transverse moments,

one looks at weighting with p�
Tp

�
T . The pretzelocity

TMD PDF h?1Tðx; p2
TÞ is an example for which double

weighting is important. It has received some attention in
the literature recently. It is a twist two chiral odd and
T-even TMD distribution function. It contributes to the
sinð3’� ’SÞ asymmetry in semi-inclusive deep inelastic
scattering (SIDIS) [20,21] and to the cosð2’þ ’a � ’bÞ
asymmetry in the Drell-Yan process involving two trans-
versely polarized protons [22,23]. In some models, such as
the bag model and spectator model, the pretzelocity distri-
bution is shown to be related to the difference between the
helicity distribution and the transversity distribution of
the nucleon [21]. This relation is not expected to hold in
the presence of gluonic interactions. In this work, we
analyze the double pT-moment of quark correlators taking
into account the gauge link, and show that like the first
moment these can also be separated into a T-even and a
T-odd part. The T-even part contains three contributions,
two of them coming from quark-quark-gluon-gluon matrix
elements containing two zero momentum gluons, which
are double gluonic pole matrix elements. The coefficients
of these matrix elements depend on the gauge link U and
are process dependent, showing that also the T-even pret-

zelocity PDF h?½U�
1T ðx; p2

TÞ is nonuniversal. We will show
that the pretzelocity function is a combination of universal
functions, linked to the three possible T-even matrix ele-
ments. While these three functions themselves are by
construction universal, it is a particular combination that
appears in a given process with link dependence in the
multiplicative coefficients. The appearance of three pret-
zelocity functions is a striking example of how the sepa-
ration of the correlator into T-even and T-odd contributions
is no longer enough to isolate the process dependent
part of the correlator when higher transverse moments
are involved. In addition to this, we will extend the trans-
verse moment analysis to give definitions of universal
p2
T-dependent functions of a definite rank. This will be

done in general for targets with spin and illustrated for
unpolarized, spin 1=2 and spin 1 targets.

II. FORMALISM

A. Starting points

The quark-quark TMD correlator is given by

�½U�
ij ðx;pT;nÞ

¼
Z d� �Pd2�T

ð2�Þ3 eip��hPj �c jð0ÞU½0;��c ið�ÞjPij��n¼0; (1)

where we use the Sudakov decomposition p� ¼ xP� þ
p
�
T þ �n� for the momentum p� of the produced quark.

In this decomposition, P� is the momentum of the incom-
ing hadron, which is in essence the leading light-like
direction, while n is the conjugate light-like direction
satisfying P � n ¼ 0. The component � / p � P along
this direction is integrated over. The nonlocal matrix ele-

ment �½U�
ij ðx; pT; nÞ contains a process dependent gauge

link U½0;��, connecting the two fields. The process depen-

dence is in the path of the gauge link. For the two simplest
possibilities, the [þ ] and [� ] gauge links, the gauge link
runs from 0 to � through plus or minus infinity along n,
respectively. This is illustrated in Fig. 1. More complicated
gauge links can arise as well. We refer to Ref. [4] for a
detailed description of these gauge links. After integration
over transverse momenta, one has the quark-quark col-
linear correlator,

�½U�
ij ðxÞ¼

Z d� �P
2�

eip��hPj �c jð0ÞU½n�
½0;��c ið�ÞjPij��n¼0;�T¼0;

(2)

where the gauge link is reduced to a straight-line gauge
link or Wilson line, which runs from 0 to � along n. Since
the quark-quark correlators cannot be calculated directly, it
is common to make a parametrization that contains TMD
or collinear PDFs, respectively. In the TMD case, there are
for a spin 1=2 nucleon eight leading contributing terms in
the parametrization of the TMD correlator [24],

�½U�ðx;pT ;nÞ

¼
�
f½U�
1 ðx;p2

TÞ�f?½U�
1T ðx;p2

TÞ
�
��
T pT�ST�

M
þg½U�

1s ðx;pTÞ	5

þh½U�
1T ðx;p2

TÞ	5STþh?½U�
1s ðx;pTÞ	5 6pT

M

þ ih?½U�
1 ðx;p2

TÞ
6pT

M

� 6P
2
; (3)

with the spin vector parametrized as S� ¼ SLP
� þ S

�
T þ

M2SLn
� and shorthand notations for g½U�

1s and h?½U�
1s ,

g½U�
1s ðx; pTÞ ¼ SLg

½U�
1L ðx; p2

TÞ �
pT � ST

M
g½U�
1T ðx; p2

TÞ: (4)

The TMD distribution functions in this parametrization
depend on x and p2

T ¼ �p2
T ¼ �jpTj2. The leading con-

tributions in the correlator all have a 6P factor and are

FIG. 1 (color online). The gauge links (a) [þ ] and (b) [� ]
running from 0 to � with � � n ¼ 0. The light-like separation
�� ¼ � � P and the transverse separation �T are nonzero.

M.G.A. BUFFING, A. MUKHERJEE, AND P. J. MULDERS PHYSICAL REVIEW D 86, 074030 (2012)

074030-2



distinguished by different azimuthal behavior for the trans-
verse vectors such as pT and ST . The correlators and the
TMD distribution functions in the parametrization also de-
pend on the gauge link. Time-reversal relates the functions

in �½U� to those in �½Ut�, where Ut is the time-reversed
gauge link, which means interchanging the running via
light-cone plus or minus infinity. For the functions f?1T and

h?1 one has f?½U�
1T ¼ �f?½Ut�

1T , a property that is referred to

as naive T-odd. Each TMD has either zero, one or two
factors of pT as a prefactor. This will play a role when
integrations over transverse momenta are considered. It is
actually useful to use in the parametrization irreducible
(symmetric and traceless) tensors in the transverse space,

p�
T ; p

��
T ¼ p�

Tp
�
T � 1

2
p2
Tg

��
T ; . . . : (5)

Just integrating (without weights) Eq. (3) over transverse
momenta, only the contributions without prefactor of pT or
traces survive, yielding

�ðxÞ ¼
�
f1ðxÞ þ SLg1ðxÞ	5 þ h1ðxÞ	5ST

� 6P
2

(6)

at the leading twist two level. Here g1ðxÞ is the integrated

version of g½U�
1L ðx; p2

TÞ and h1ðxÞ is the pT-integrated version

of h½U�
1 ðx; p2

TÞ ¼ h½U�
1T ðx; p2

TÞ þ h?½U�ð1Þ
1T ðx; p2

TÞ including a

trace term, which involves functions weighted with powers
of �p2

T=2M
2 ¼ p2

T=2M
2, in general

fðnÞ... ðx; p2
TÞ ¼

��p2
T

2M2

�
n
f...ðx; p2

TÞ: (7)

The integrated functions fðnÞ... ðxÞ are usually referred to as
transverse moments, but we will extend this name to azi-
muthally averaged functions that still depend on p2

T . The
collinear PDFs in Eq. (6) are independent of the gauge link
U. In other words, all operator definitions of these collinear
PDFs have a unique straight-line gauge link.

The behavior of (TMD) PDFs under time-reversal can be
studied. The functions f?1T and h?1 are time-reversal odd,
while the remaining six functions are time-reversal even.
Similarly, one can look at the behavior of the matrix
element(s) under time-reversal. Using the fact that the
simplest gauge links for quark correlators, the [þ ] and
[� ] gauge links, are a time-reversal couple, one can
construct T-even and T-odd TMD correlators [2],

�ðT�evenÞðx; pTÞ ¼ 1

2

�
�½þ�ðx; pTÞ þ�½��ðx; pTÞ

�
; (8a)

�ðT�oddÞðx; pTÞ ¼ 1

2

�
�½þ�ðx; pTÞ ��½��ðx; pTÞ

�
: (8b)

For the unweighted integrated case the separation between
T-even and T-odd objects would be trivial, since the [þ]
and [�] gauge links are identical after integration over

transverse momentum. As a result, �ðxÞ ¼ �ðT�evenÞðxÞ
and �ðT�oddÞðxÞ ¼ 0. For the transverse momentum
weighted case both functions are important. One thus is
tempted to identify the TMD functions f?1T and h?1 to the
T-odd correlator and the other TMD functions to the
T-even correlator, in which the T-odd ones acquire process
dependence. The situation will turn out to be more com-
plex, which is most easily demonstrated by looking at
transverse momentum weighting.

B. Single transverse weighting

In the pT-weighted case multiple matrix elements
appear, since the transverse weighting gives rise to a de-
rivative that not only acts on the fields, but on the gauge
links as well. Weighting with p�

T can be rewritten in terms
of two contributions, which upon pT-integration only de-
pend on x and depend on the link just through a gluonic
pole factor [2],

��½U�
@ ðxÞ �

Z
d2pTp

�
T�

½U�ðx; pTÞ

¼
�
��

DðxÞ ���
AðxÞ

�
þ �C½U�

G ��
GðxÞ

¼ ~��
@ ðxÞ þ �C½U�

G ��
GðxÞ: (9)

The matrix element ��
GðxÞ is referred to as the gluonic

pole matrix element. All matrix elements are built from
multiparton twist three operator combinations, illustrated
in Fig. 2. The relevant ones in the final result of a calcu-
lation involve gauge-invariant operators iD�

T and Fn�
T

rather than A�
T ,

��
Dijðx�x1;x1jxÞ

¼
Z d� �Pd
 �P

ð2�Þ2 eip1�
þiðp�p1Þ��

�hPj �c jð0ÞU½0;
�iD�
T ð
ÞU½
;��c ið�ÞjPijLC; (10)

FIG. 2 (color online). The correlators (a) �Aðx� x1; x1jxÞ, (b) �Aðxjx1; x� x1Þ and (c) �Aðx;�x1jx� x1Þ. Note that the diagrams
in (b) and (c) are equal to each other.
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��
Fijðx�x1;x1jxÞ¼

Z d� �Pd
 �P
ð2�Þ2 eip1�
þiðp�p1Þ��

�hPj �c jð0ÞU½0;
�Fn�
T ð
Þ

�U½
;��c ið�ÞjPijLC: (11)

The matrix elements showing up in Eq. (9) are related to
these multiparton correlators, to be precise we need the
matrix elements

��
DðxÞ ¼

Z
dx1�

�
Dðx� x1; x1jxÞ; (12)

��
AðxÞ �

Z
dx1PV

i

x1
�n�

F ðx� x1; x1jxÞ; (13)

��
GðxÞ ¼ �n�

F ðx; 0jxÞ: (14)

By using the Eqs. (8a) and (8b), one finds that ~��
@ ðxÞ is a

T-even matrix element, involving the�D and�A, the latter
being the principal value integration over a correlator
involving the gluon fields defined in a T-invariant way.
The gluonic pole matrix element��

GðxÞ, in order to distinct
it from �F indicated with an index G, is T-odd.

The choice of notation for the arguments of multiparton
correlators, where the produced quark and gluon on the left
side of the cut have momentum fractions x� x1 and x1 and
the incoming quark on the right side of the cut has a
momentum fraction x, is illustrated in Fig. 2(a). Despite
the fact that the assignment of momenta in the correlators in
Eqs. (10)–(14) is overdetermined, it has the advantage that
it is more transparent in our forthcoming generalization to
higher weightings. Furthermore, because of the absence of
T-ordering, one can move a gluon through the cut by
changing the sign of the momentum. Under Hermiticity
one finds that the correlators in Eq. (14) have the behavior

	0�
y
Aðx� x1; x1jxÞ	0 ¼ �Aðxjx1; x� x1Þ.

The weighting with transverse momenta can also be
analyzed by studying the parametrization in PDFs. For
single pT-weighting, only PDFs with one prefactor of pT

in the parametrization in Eq. (3) survive. T-even PDFs

contribute to the ~��
@ ðxÞ matrix element, while T-odd

PDFs contribute to the ��
GðxÞ matrix element, see

Ref. [2] for a detailed study of this. Since the T-odd matrix
element comes with a process dependent prefactor, it can
be seen that for single pT-weighting, the behavior under
time-reversal can be used to identify the process dependent
parts. In literature, it has become common to use notations

like f?ðSIDISÞ
1T or f?ðDYÞ

1T for these functions. This suggests

that there are many different versions of specific functions,
which are obviously not universal, one for each process
with a different gauge link. In fact there is a universal
transverse moment relating all link dependent ones,

f?ð1Þ½U�
1T ðxÞ ¼ C½U�

G f?ð1Þ
1T ðxÞ: (15)

Although the only difference for the single weighted case is
just the numerical prefactor that for simple processes is just
þ1 or �1, we will show in the next section that for the

double weighted case the situation becomes more compli-
cated and one actually gains a lot by this different notation.
But even for single weighting there is a clear advantage
using Eq. (15), because it states that there is a universal
function with calculable process (link) dependent numbers
rather than an infinite number of somehow related func-
tions. For some gauge links, these numbers are shown in

Table I. Here U½h� is the Wilson loop U½��yU½þ�.
C. Double transverse weighting

In order to evaluate the double transverse weighting we
need to consider matrix elements like

���
FFðx�x1�x2;x1;x2jxÞ

¼
Z d� �P

2�

d
 �P
2�

d
0 �P
2�

eix2ð
0�PÞeix1ð
�PÞeiðx�x1�x2Þð��PÞ

�hP;Sj �c ð0ÞU½n�
½0;
0�F

n�
T ð
0ÞU½n�

½
0;
�F
n�
T ð
Þ

�U½n�
½
;��c ð�ÞjP;SijLC; (16)

among others, where LC indicates that all transverse com-
ponents and n-components of the coordinates are zero.
Besides this matrix element one needs�DF, �FD and�DD

as well as bilocal matrix elements, obtained by direct or
principal value integrations over these matrix elements (as
in the case of single transverse momentum weighting) or
gluonic polematrix elements, where x1 or x2 or both are zero.
Explicitly, the matrix elements are discussed in Appendix A.
The actual weighting of the gauge link dependent TMD

correlator �½U�ðx; pTÞ gives
�f��g½U�

@@ ðxÞ �
Z

d2pTp
f�
T p�g

T �½U�ðx; p2
TÞ

¼ ~�f��g
@@ ðxÞ þ �C½U�

G

�
~�f��g
@G ðxÞ þ ~�f��g

G@ ðxÞ
�

þX
c

�2C½U�
GG;c�

f��g
GG;cðxÞ

¼ ~�f��g
@@ ðxÞ þ �C½U�

G

�
~�f��g
@G ðxÞ þ ~�f��g

G@ ðxÞ
�

þ �2C½U�
GG;1�

f��g
GG;1ðxÞ þ �2C½U�

GG;2�
f��g
GG;2ðxÞ:

(17)

For the correlators containing two (or more) gluon fields
like the one in Eq. (16), one must distinguish the different

TABLE I. The values of the gluonic pole prefactors for some
gauge links needed in the pT-weighted cases. Note that the value

of C½U�
G is the same for single and double transverse weighting.

U U½�� U½þ�U½h� 1
Nc

TrcðU½h�ÞU½þ�

�½U� �½�� �½þh� �½ðhÞþ�

C½U�
G �1 3 1

C½U�
GG;1 1 9 1

C½U�
GG;2 0 0 4
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color structures for the correlator, hence a summation over
the color structures c. For double weighting, there are in
the double gluonic pole part two possible color structures
related to the appearance of the color traced Wilson loop
1
Nc

TrcðU½h�Þ. The differences between the two different

correlators �f��g
GG;cðxÞ are made explicit in Appendix A.

Just as for the single weighted case in Eq. (9), the structures
~�... with one or more partial derivatives denote differences
between correlators with a covariant derivative minus
a correlator with a principal value integration, e.g.,
~�f��g
@G ðxÞ ¼ �f��g

DG ðxÞ ��f��g
AG ðxÞ. For completeness, they

are given in Appendix A. Since the weighting is done
with the symmetric combination, we have symmetrized
in the indices, which should not influence the result. We
also omitted the Dirac indices on the fields. The precise
form of all correlators in terms of matrix elements can be
found in Appendix A.

The only leading twist TMD PDF that contributes is the

pretzelocity h?½U�
1T ðx; p2

TÞ. Since this function is T-even, its
(double) transverse moment could be associated with both

the matrix elements ~�f��g
@@ ðxÞ and �2�f��g

GG;cðxÞ. The gluonic
pole matrix elements come with gauge link dependent
prefactors, so the pretzelocity function as it has been
defined in literature up to now is not universal. The double
gluonic pole factor gives the gauge link dependence and
one must identify the gauge link dependent function as the
sum of three functions,

h?ð2Þ½U�
1T ðxÞ ¼ h?ð2ÞðAÞ

1T ðxÞ þ C½U�
GG;1h

?ð2ÞðB1Þ
1T ðxÞ

þ C½U�
GG;2h

?ð2ÞðB2Þ
1T ðxÞ; (18)

where the functions h?ð2ÞðAÞ
1T ðxÞ, h?ð2ÞðB1Þ

1T ðxÞ and h?ð2ÞðB2Þ
1T ðxÞ

are universal. For simple processes like SIDIS and Drell-
YanwithCGG;1 ¼ 1 andCGG;2 ¼ 0 one finds just the sum of

two pretzelocity functions. For processes with a more com-
plicated gauge link structure, other combinations involving
three functions will appear, as can be seen in Table I. The
double weighted results also show that for higher transverse
moments, and hence also for the full pT-dependent treat-
ment, a separation in T-odd and T-even functions is no
longer sufficient to isolate the process dependent parts.

III. DEFINING TMDS

For the definition of a TMD correlator parametrized in
terms of PDFs (or PFFs) depending on the collinear frac-
tion x and transverse momentum pT it is important to keep
in mind the role of x and pT . These are identified with
kinematic variables in a high-energy scattering process.
This is most well known for x, which in a SIDIS process
is identified with the Bjorken scaling variable. In the same
way the transverse momentum can be identified, e.g., from
the noncollinearity of produced hadrons or from jet-jet
asymmetries, even if for transverse momenta the identifi-
cation is usually contained in a folding of transverse

momenta of several hadron correlators. So for purposes
of further analyzing we assume that we know that a hadron
correlator depends on ‘‘measurable’’x and pT . When in-
cluding the additional collinear gluons producing the
gauge link, pT is the sum of all transverse momenta of
the partons exchanged between the (soft) hadron correlator
and the hard process. This requires integration over the
transverse momenta of collinear gluons.
The leading relevant TMD operator structure for our

considerations thus will be of the generic bilocal form

�½U�ðx;pT ;nÞ¼
Z d� �Pd2�T

ð2�Þ3 eip��

�hPj �c ð0ÞU½0;��Oð�Þc ð�ÞjPij��n¼0; (19)

where U is one of the possible gauge links for TMD

correlators. We can define in this way ~��
@ ðx; pTÞ ¼

��
Dðx; pTÞ ���

Aðx; pTÞ, as well as correlators ���
DD,

���
DA; . . . ;

~���
@@ ,

~���
@G; . . . ;�

��
GG, where one in particular

for �GG must take care of the color structure.
Our identification of operator structures and TMD func-

tions in the parametrization of correlators depends on the
comparison of moments in x and pT , even if such moments
in real life are limited by kinematics of the process. This is
well known, but nontrivial, for the collinear dependence,
where the moments can be related to local matrix elements
of quark and gluon fields. All these operators have the same
twist (canonical dimension minus rank of Lorentz indices),
which means they contribute at the same order of the hard
scale. The xN�1 Mellin moments correspond to expectation
values of leading twist operators of rank N. These local
matrix elements have a calculable scale dependence gov-
erned by the anomalous dimension of the local operator. The
scale is usually identified with the kinematic limit such as
the exchanged momentum Q2 in SIDIS. The x-dependent
functions can be reconstructed from the Mellin moments.
Their scale dependence then is obtained by folding them
with splitting functions, of which the Mellin moments are
precisely the anomalous dimensions.

A. TMDs of definite rank

For the pT-dependent functions we follow a similar pro-
cedure. An expansion of TMDs involves the symmetric trace-
less tensors p�1...�m

T of rankm. These traceless tensors satisfyZ
d2pTp

�1...�m

T pTi1...imf...ðx; p2
TÞ / fðmÞ

... ðxÞ: (20)

Actually, it is sufficient and for our purposes desirable to
integrate only the azimuthal part,

Z d’p

2�
p�1...�m
T pTi1...imf...ðx; p2

TÞ / fðmÞ
... ðx; p2

TÞ: (21)

The rhs of these equations contain the transverse mo-

ments fðmÞ defined in Eq. (7) as well as constant tensors
without azimuthal dependence. Writing the following
parametrization:
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�½U�ðx; pTÞ ¼ �ðx; p2
TÞ þ �C½U�

G

pTi

M
�i

Gðx; p2
TÞ þ �2C½U�

GG;c

pTij

M2
�ij

GG;cðx; p2
TÞ þ �3C½U�

GGG;c

pTijk

M3
�ijk

GGG;cðx; p2
TÞ þ . . .

þ pTi

M
~�i
@ðx; p2

TÞ þ �C½U�
G

pTij

M2
~�ij
f@Ggðx; p2

TÞ þ �2C½U�
GG;c

pTijk

M3
~�ijk
f@GGg;cðx; p2

TÞ þ . . .

þ pTij

M2
~�ij
@@ðx; p2

TÞ þ �C½U�
G

pTijk

M3
~�ijk
f@@Ggðx; p2

TÞ þ . . .

þ pTijk

M3
~�ijk
@@@ðx; p2

TÞ þ . . . ; (22)

we reproduce the moments. Note that in Eq. (22) depending
on the gauge link there are multiple contributing color
structures for terms with two or more gluonic pole terms,
hence the inclusion of the summation over these color struc-
tures c. For the collinear correlators �ij

GG;cðxÞ this is dis-
cussed in Appendix A, for the TMD correlator�ij

GG;cðx; p2
TÞ

it is discussed in Appendix B. The operator structures on
the rhs thus are the ones appearing in an angular expansion,
in which the azimuthal dependence is made explicit. The
combinations like ~�f@Gg indicate symmetrized combinations
~�f@Gg ¼ ~�@G þ ~�G@. Upon’-integration only the structure
�ðx; p2

TÞ survives. Hence, we identify this as the rank zero
TMD correlator,

�ðx; p2
TÞ

¼
�
f1ðx; p2

TÞ þ SLg1ðx; p2
TÞ	5 þ h1ðx; p2

TÞ	5ST

� 6P
2
;

(23)

where the TMD correlator h1ðx; p2
TÞ rather than h1Tðx; p2

TÞ
appears [see also the remark following Eq. (6)]. Next, we
look at the weighted expressions before pT-integration in
order to explicitly identify further TMD functions,
p�
T

M
�½U�ðx; pTÞ ¼ p�

T

M
�ðx; p2

TÞ � ~��ð1Þ
@ ðx; p2

TÞ

� �C½U�
G ��ð1Þ

G ðx; p2
TÞ þ

p�
Ti

M2
~�i
@ðx; p2

TÞ

þ �C½U�
G

p�
Ti

M2
�i

Gðx; p2
TÞ þ . . . : (24)

The first term is obviously a term that needs to be there
because we already identified a nonzero rank zero TMD
correlator. The next two terms involve the T-even and
T-odd transverse moments of ~��

@ ðx; p2
TÞ and ��

Gðx; p2
TÞ,

respectively, which survive ’-integration. The other terms

in Eq. (24) contain higher rank tensors inpT . Comparing the
unintegrated expression with the parametrization for a
spin 1=2 target one thus immediately identifies in addition
to the rank 0 correlator in Eq. (23) two rank one TMD
correlators,

pTi

M
~�i
@ðx; p2

TÞ ¼
�
h?1Lðx; p2

TÞSL
	5 6pT

M

� g1Tðx; p2
TÞ
pT � ST

M
	5

� 6P
2
; (25)

pTi

M
�i

Gðx; p2
TÞ ¼

1

�

�
�f?1Tðx; p2

TÞ
���T pT�ST�

M

þ ih?1 ðx; p2
TÞ

6pT

M

� 6P
2
; (26)

the first one being T-even, the second one T-odd.
Before going to double weighting, it is useful to realize

that in Eq. (22) one does not need to subtract trace terms
from the second rank correlators. This is automatic because

of the use of the tensor p��
T . We can write

pTij

M2
~�ij
f@Gg ¼

�
pTipTj

M2
� p2

T

2M2
gTij

�
~�ij
f@Gg

¼ pTipTj

M2
~�ij
f@Gg þ ~�ð1Þ

f@�Gg

¼ pTipTj

M2

�
~�ij
f@Gg �

1

2
gijT

~�f@�Gg
�
: (27)

In Eq. (27) we introduced the notation @ � G in the sub-
script of one of the correlators to indicate that these two
operators in this correlator have been contracted. Also for
double pT-weighting we write down (selected contribu-
tions in) the unintegrated result starting with Eq. (22).
We find for the double weighted result,

p�
Tp

�
T

M2
�½U�ðx; pTÞ ¼ p�

Tp
�
T

M2
�ðx; p2

TÞ �
1

2
g��T

pTi

M
~�ið1Þ
@ ðx; p2

TÞ �
1

2
�C½U�

G g��T
pTi

M
�ið1Þ

G ðx; p2
TÞ

� 1

2M
pf�
T
~��gð1Þ
@ ðx; p2

TÞ � �C½U�
G

1

2M
pf�
T ��gð1Þ

G ðx; p2
TÞ þ . . .

þ ~���ð2Þ
@@ ðx; p2

TÞ þ �C½U�
G

~���ð2Þ
f@Gg ðx; p2

TÞ þ �2C½U�
GG;c�

��ð2Þ
GG;c ðx; p2

TÞ þ . . .

� 1

2
g��T

�
~�ð2Þ
@�@ðx; p2

TÞ þ �C½U�
G

~�ð2Þ
f@�Ggðx; p2

TÞ þ �2C½U�
GG;c�

ð2Þ
G�G;cðx; p2

TÞ
�
þ . . . ; (28)

an equation that after symmetrizing in � and � can be used to identify the remaining TMDs for a spin 1=2 target. We have
omitted terms with rank one tensors in pT multiplying ~���i

@@@ , etc., as well as terms with rank 3 or rank 4 tensors like p��
T i
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and p��
T ij. The last line in Eq. (28), containing terms that arise by contraction of the indices i and j in the explicit rewriting

of the product p�
Tp

�
TpTij through the contribution g��T gTij, is included for completeness. Note that taking the trace

� 1
2gT�� gives

� p2
T

2M2
�½U�ðx;pTÞ¼�ð1Þðx;p2

TÞþ
pTi

M
~�ið1Þ
@ ðx;p2

TÞþ�C½U�
G

pTi

M
�ið1Þ

G ðx;p2
TÞ�

1

2
~�ð2Þ
@�@ðx;p2

TÞ

�1

2
�C½U�

G
~�ð2Þ
f@�Ggðx;p2

TÞ�
1

2
�2C½U�

GG;c�
ð2Þ
G�G;cðx;p2

TÞþ . . .

þ
�
~�ð2Þ
@�@ðx;p2

TÞþ�C½U�
G

~�ð2Þ
f@�Ggðx;p2

TÞþ�2C½U�
GG;c�

ð2Þ
G�G;cðx;p2

TÞ
�
þ . . . ; (29)

where the terms between brackets come from the correlators with contracted operators in Eq. (28). This shows that

p��
T

M2
�½U�ðx;pTÞ¼p��

T

M2
�ðx;p2

TÞ�
1

2M

�
pf�
T
~��gð1Þ
@ ðx;p2

TÞ� trace

�
� 1

2M
�C½U�

G

�
pf�
T ��gð1Þ

G ðx;p2
TÞ� trace

�
þ . . .

þ
�
~���ð2Þ
@@ ðx;p2

TÞ� traces

�
þ�C½U�

G

�
~���ð2Þ
f@Gg ðx;p2

TÞ� traces

�
þ�2C½U�

GG;c

�
���ð2Þ

GG;c ðx;p2
TÞ� tracesc

�
þ . . . ;

(30)

illustrating how the projection with the properly symme-
trized traceless second-rank tensor p��

T gives the properly
symmetrized traceless TMD structures. The terms without
azimuthal dependence are identified with the rank two
TMD correlators, which for a spin 1=2 target are parame-
trized as

pTij

M2
~�ij
@@ðx;p2

TÞ¼h?ðAÞ
1T ðx;p2

TÞ
pTijS

i
T	5	

j
T

M2

6P
2
; (31)

pTij

M2
�ij

GG;1ðx;p2
TÞ¼

1

�2
h?ðB1Þ
1T ðx;p2

TÞ
pTijS

i
T	5	

j
T

M2

6P
2
; (32)

pTij

M2
�ij

GG;2ðx;p2
TÞ¼

1

�2
h?ðB2Þ
1T ðx;p2

TÞ
pTijS

i
T	5	

j
T

M2

6P
2
; (33)

pTij

M2
~�ij
f@Ggðx; p2

TÞ ¼ 0: (34)

The last TMD correlator in these equations is a T-odd rank
two TMD correlator, which is not present for a spin 1=2
target. The result can also be summarized as the existence
of three universal pretzelocity functions h?ðAÞ

1T , h?ðB1Þ
1T and

h?ðB2Þ
1T and a gauge link dependence given by

h?½U�
1T ðx; p2

TÞ ¼ h?ðAÞ
1T ðx; p2

TÞ þ C½U�
GG;1h

?ðB1Þ
1T ðx; p2

TÞ
þ C½U�

GG;2h
?ðB2Þ
1T ðx; p2

TÞ: (35)

This shows e.g., that h?½SIDIS�
1T ðx; p2

TÞ ¼ h?½DY�
1T ðx; p2

TÞ, but
that for other processes (with more complicated gauge
links) other combinations of the three possible pretzelocity
functions occur. In asymmetries involving p��

T -moments
of the quark TMD correlator contributions from all
four correlators can appear. In particular we find for a
transversely polarized spin 1=2 target three pretzelocity
functions, as was already established in Eq. (18). For a
spin 1=2 target our treatment is complete, since there are no

higher-rank TMD correlators such as pTijk
~�ijk
@@@ðx; p2

TÞ. In
the case of a spin 1=2 target the pretzelocity TMD func-
tions h?ðB2Þ

1T actually was referred to as junk TMD in
Ref. [8].
We want to summarize our results in this section in

tabular form. We first represent the contributions in
Eq. (22) in Table II. The assignment of the TMD PDFs
for an unpolarized and polarized spin 1=2 target has been
discussed in this section and is summarized in Tables III
and IV. For the corresponding fragmentation functions the
assignments are different, since gluonic pole matrix ele-
ments vanish in that case [15–17] and all functions are

assigned to ~�@...@ operator structures. The assignments thus
are as in Tables V and VI. The T-odd TMD PFFs (such as
the Collins function H?

1 ) are due to the fact that the
definitions of fragmentation functions involve non-plane
wave states or equivalently a hadronic number operator,
which are not invariant under time-reversal. Thus, there is
only a single (T-even) function H?

1Tðz; k2TÞ appearing in the

parametrization of the correlator ���
@@ ðx; p2

TÞ.

TABLE II. The contributions in the TMD correlator for corre-
lators ordered in columns according to the number of gluonic
poles (G) and ordered in rows according to the number of
contributing partial derivatives (@ ¼ D� A). The rank of these
operators is equal to the sum of these numbers. Their twist is
equal to the rankþ 2.

Gluonic pole rank

0 1 2 3

�ðx; p2
TÞ �C½U�

G �G �2C½U�
GG;c�GG;c �3C½U�

GGG;c�GGG;c

~�@ �C½U�
G

~�f@Gg �2C½U�
GG;c

~�f@GGg;c . . .

~�@@ �C½U�
G

~�f@@Gg . . . . . .

~�@@@ . . . . . . . . .
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B. Results for spin 1 hadrons

Extension to higher spin targets is straightforward. We
illustrate this by giving in Table VII the assignments for
spin 1 tensor polarized TMD functions. These were first
given in Ref. [25]. The (slightly updated) parametrization
of the TMD correlator for the TMD PDFs for a tensor
polarized target are given in Appendix C as well as the
parametrization of the TMD PFFs in Appendix D. From

these tensor polarized spin 1 contributions, the f½U�
1TTðx; p2

TÞ
and h?½U�

1TT ðx; p2
TÞ can be written as a combination of

multiple universal PDFs, multiplied with process depen-
dent gluonic pole factors,

f½U�
1TTðx; p2

TÞ ¼ fðAÞ1TTðx; p2
TÞ þ C½U�

GG;cf
ðBcÞ
1TT ðx; p2

TÞ; (36)

h?½U�
1TT ðx; p2

TÞ ¼ C½U�
G h?ðAÞ

1TT ðx; p2
TÞ þ C½U�

GGG;ch
?ðBcÞ
1TT ðx; p2

TÞ:
(37)

Note that the h?½U�
1TT ðx; p2

TÞ is a rank 3 object, for which all
contributing universal functions are multiplied with a pro-
cess dependent prefactor. A special case is the T-odd TMD
PDF h1LT , which is forbidden because of time-reversal
invariance. Following Ref. [25], this rank zero TMD PDF

is defined as the combination h1LTðx; p2
TÞ ¼ h01LTðx; p2

TÞ þ
h?ð1Þ
1LT ðx; p2

TÞ and is shown as the wiped-out function in
Table VII. It shows a nice feature of our TMD functions
of definite rank. In the first column only T-even TMD PDFs
are allowed, in the second column only T-odd ones,
etc. The first victim of the application of time-reversal
invariance for leading quark TMDs, thus, is h1LTðx; p2

TÞ,
a (T-forbidden) transversely polarized quark distribution
function in a tensor polarized hadron. Note that the rank
two, T-odd function h?1LTðx; p2

TÞ is allowed. The only rank 0
function for a tensor polarized spin 1 target thus is
f1LLðx; p2

TÞ, introduced as the distribution b1 in Ref. [26].
For fragmentation functions, gluonic pole contributions

all vanish and only the first column survives. The parame-
trization of the higher rank correlators contain the T-even
and T-odd TMD fragmentation functions. The fragmenta-
tion functions describing fragmentation into a tensor
polarized hadron are given in Table VIII.

C. Bessel weights

We note that the TMDs fðmÞðx; p2
TÞ of a given rank do not

contain operators of definite twist. This is only true for

transverse moments fðmÞ
... ðxÞ after pT-integration. The TMD

correlators of definite rank appearing in the parametriza-
tion in Eq. (22) only are integrated over azimuthal

TABLE III. The assignment of TMD PDFs for a spin 0 or
unpolarized target to the quark correlators as given in Table II
involve at most rank one TMD correlators. There is no T-even
function corresponding to ~�i

@.

PDFs for spin 0 hadrons (gluonic pole rank)

0 1 2 3

f1 h?1

TABLE IV. The assignment of TMD PDFs for a polarized
spin 1=2 target to the quark correlators as given in Table II
involve at most rank one TMD correlators for longitudinal
polarization, while they involve also rank two TMD correlators
for a transversely polarized spin 1=2 target.

PDFs for spin 1=2 hadrons (gluonic pole rank)

0 1 2 3

g1, h1 f?1T h?ðB1Þ
1T , h?ðB2Þ

1T

g1T , h
?
1L

h?ðAÞ
1T

TABLE V. The operator structure of quark TMD PFFs for
spin 0 or unpolarized hadrons. All gluonic pole matrix elements
vanish.

PFFs for spin 0 hadrons (gluonic pole rank)

0 1 2 3

D1

H?
1

TABLE VI. The operator structure of quark TMD PFFs for
polarized spin 1=2 hadrons. Gluonic pole matrix elements
vanish.

PFFs for spin 1=2 hadrons (gluonic pole rank)

0 1 2 3

G1, H1

G1T , H
?
1L, D

?
1T

H?
1T

TABLE VII. The operator assignments of TMD PDFs for a
tensor polarized spin 1 target require operator structures up to
rank 3. There are several different functions f1TTðx; p2

TÞ and

h?1TTðx; p2
TÞ.

PDFs for tensor polarized spin 1 hadrons (gluonic pole rank)

0 1 2 3

f1LL, h?1LL, g1LT , h1TT fðBcÞ1TT h?ðBcÞ
1TT

f1LT h?1LT , g1TT

fðAÞ1TT h?ðAÞ
1TT
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directions. The rank just refers to the azimuthal depen-

dence of the correlators in the full correlator �½U�ðx; pTÞ.
Using that for a given rankm, there are two independent

combinations pi1...im
T / jpTjm expð�im’pÞ, it is equivalent

to consider

pTi1...im

Mm
~�i1...im
... ðx; p2

TÞ or ~�ðm=2Þ
... ðx; p2

TÞeim’p; (38)

where ~�ðm=2Þ
... ðx; p2

TÞ ¼ ð�p2
T=2M

2Þm=2 ~�...ðx; p2
TÞ assures

the appropriate small pT-behavior. A suitable normaliza-

tion of the correlator has to assure that ~�ðmÞ
... ðx; p2

TÞ repro-
duces the collinear transverse moments upon integration,

~� ðmÞ
... ðxÞ ¼

Z 1

0
2�jpTjdjpTj ~�ðmÞ

... ðx; p2
TÞ: (39)

Knowing the correlators in Eq. (38) to be Fourier trans-
forms of nonlocal matrix elements in transverse space, it is
natural to write the appropriately weighted TMD PDF in
their parametrization as a Bessel transform,

~f ðm=2Þ
... ðx; jpTjÞ ¼

Z 1

0
db

ffiffiffiffiffiffiffiffiffiffiffiffi
jpTjb

q
JmðjpTjbÞfðm=2Þ

... ðx; bÞ;
(40)

such that fðm=2Þ
... ðx; bÞ expðim’bÞ is the (two-dimensional)

Fourier transform of ~fðm=2Þ
... ðx; jpTjÞ expðim’pÞ. Bessel

weightings are extensively studied in Ref. [27].
Bessel weighting may also offer a convenient way to

incorporate the soft factor which usually is given in
b-space [28]. This factor has been omitted from Eq. (19).
Our decomposition in Eq. (22), however, can always be
written down, but the �...ðx; p2

TÞ will be modified by the
inclusion of the soft factor.

IV. CONCLUSIONS

In Eq. (22) we have presented a parametrization for TMD
quark correlators that distinguishes different azimuthal de-
pendences. For this we write down an expansion in terms of
irreducible tensors in the transverse momentum multiplied
with correlators depending on x and p2

T . These correlators
contain tensors describing the polarization of the target and
TMD functions depending on x and p2

T . The rank of the
irreducible tensors in transverse momentum space also
defines the rank of the correlators and TMD functionsmulti-
plying this tensor. The field theoretical expression for the
quark correlator basically has two quark fields connected by

a gauge link. The operator structure of the TMD correlators
of a definite rank contain Dirac gammamatrices, derivatives
or gauge fields with transverse indices in color gauge-
invariant combinations and a definite rank. They are struc-
tured in a similar way as higher twist operators in the
collinear case. Each independent operator combination de-
fines a particular TMD function. For leading twist operators
the relevant ‘transverse’ operators are either gluonic pole
(G) or partial derivative (@ ¼ D� A) or combinations
thereof. A special feature of these operator combinations
of definite rank is that they are either T-even or T-odd after
extraction of a gluonic pole factor without having to perform
weighting and integration over transverse momentum.
Using the parametrization of TMD correlators in

Eq. (22), one finds that rank zero and rank one contribu-
tions are similar to previously used definitions for T-even
and T-odd contributions, such as e.g., obtained by combin-
ing ‘‘opposite’’ gauge links in Eq. (8). Just as the collinear
transverse moments, these TMD functions are universal
functions, multiplied with a process dependent prefactor,
rather than nonuniversal gauge link dependent functions.
By explicitly and systematically looking at all contributing
functions, one finds for an unpolarized target two TMD
quark correlators, the first being of rank 0, containing the
TMD PDF f1ðx; p2

TÞ. Looking at the operator structure, it is
interpreted as the momentum distribution of quarks. The
second unpolarized TMD correlator is a T-odd gluonic pole
matrix element of rank one. It contains the Boer-Mulders
TMD PDF h?1 ðx; p2

TÞ.
For a polarized spin 1=2 target there are an additional

eight TMD correlators, containing rank zero, rank one and
rank two contributions. The two rank 0 correlators contain
the TMD PDFs that are interpreted as the well-known
polarized spin distribution functions in longitudinally or
transversely polarized targets. For a longitudinally polar-
ized target, there is a T-even rank one TMD correlator
~�@ðx; p2

TÞ containing the worm gear function h?1Lðx; p2
TÞ.

For a transversely polarized target, there exist one T-even

TMD correlator ~�@ðx; p2
TÞ and a T-odd rank one TMD

correlator �Gðx; p2
TÞ containing the worm gear function

g1Tðx; p2
TÞ and the Sivers function f?1Tðx; p2

TÞ, respectively.
The three TMD correlators of rank two appear in the

T-even correlator ~�@@ðx; p2
TÞ and the two T-even double

gluonic pole correlators �GG;cðx; p2
TÞ, giving rise to the

pretzelocity functions h?ðAÞ
1T ðx; p2

TÞ, h?ðB1Þ
1T ðx; p2

TÞ and

h?ðB2Þ
1T ðx; p2

TÞ. These functions in general both show up in

particular azimuthal asymmetries but with gauge link de-
pendent prefactors, where the gauge link in turn depends
on the process. As for the functions themselves and in

particular their interpretation, the function h?ðAÞ
1T is related

to the quark structure of a nucleon, while the functions

h?ðBcÞ
1T are the ones involving quark-gluon correlations.

For a spin1 target onefinds apart from the abovementioned
TMD correlators additional correlators because one also has

TABLE VIII. The operator structure of TMD PFFs for a tensor
polarized spin 1 target requires operator structures up to rank 3.

PFFs for tensor polarized spin 1 hadrons (gluonic pole rank)

0 1 2 3

D1LL, H1LT

D1LT , H
?
1LL, G1LT , H1TT

D1TT , H
?
1LT , G1TT

H?
1TT
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the possibility of tensor polarization.The full list ofTMDshas
been given in Table VII, including rank 3 contributions
coming with process dependent prefactors. Rank 3 contribu-
tions like this are specific for targets with spin 1 or higher.

The procedure for defining universal TMD correlators
of definite rank can be extended to gluon TMDs and to
higher twist situations. The extension to gluon TMDs will
be presented in a forthcoming publication. The situation
for higher twist TMDs is complicated by the fact that the
lowest twist operators that contribute to the TMDs not only
contain two quark fields or two gluon fields, but they also
contain additional (gluon) operators with transverse direc-
tions, D�

T and Fn�
T , no longer in the combination @�T .

As a final advantage of the universal TMD correlators
we mention that, although their nonlocal operator structure
is of the form in Eq. (19) with a particular gauge linkU, the
TMD correlators of definite rank have definite T-behavior
(even or odd) and are independent of the gauge link. The
U-dependence is in the gluonic pole factors and the color
structure of the operator combination. Thus one can study
the universal TMD correlators, for instance in lattice cal-
culations, by using just the sum and difference of the

simplest U½þ� and U½�� staple links.
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APPENDIX A: DOUBLE WEIGHTED
COLLINEAR MATRIX ELEMENTS

Double pT-weighting is worked out in the same way as
the single weighting. In evaluating the weighting one can
actually choose the derivatives to work on � or 0 or mix
these, but that does not matter for the final answer. Since
we just are interested in the general structure, wework with
the multiparton element with all gluons on the left side of

the cut. For the gauge link U½þ�
½0;�� we note that (writing only

the relevant pieces of the matrix elements) [29]

i@�TU
½þ�
½0;�� ¼ U½n�

½0;1�i@
�
TU

T
½0T ;�T �U

½n�
½1;��

¼ U½n�
½0;1�U

T
½0T ;�T �iD

�
TU

½n�
½1;��; (A1)

which is then further evaluated using

iD�
TU

½n�
½1;�� . . .c ð�Þ

¼U½n�
½1;��

�
iD�

T ð�Þ�A�
T ð�Þþ� ~Gn�ð�Þ

�
. . .c ð�Þ: (A2)

The A�
T ð�Þ and � ~Gn�ð�Þ are defined as

A�
T ð�Þ ¼

1

2

Z 1

�1
d
 � P�ð� � P� 
 � PÞ

�U½n�
½�;
�G

n�ð
ÞU½n�
½
;��; (A3)

� ~Gn�ð�Þ¼1

2

Z 1

�1
d
 �PU½n�

½�;
�G
n�ð
ÞU½n�

½
;��; (A4)

with �ð�Þ being the sign function taking the values 1, �1

and 0. Note that ~Gn�ð�Þ ¼ ~Gn�ð� � P; �TÞ does not depend
on � � n. The above described method for calculating
the structure of the matrix elements for a single transverse
weighting can be extended to higher transverse weightings
by repeated application of Eq. (A2). For example, for the

U½þ� gauge link this implies

iD�
T iD

�
TU

½n�
½1;�� . . .c ð�Þ ¼U½n�

½1;��

��
iD�

T ð�Þ �A�
T ð�Þ

��
iD�

T ð�Þ �A�
T ð�Þ

��
. . .c ð�Þ þU½n�

½1;��

�
� ~Gn�ð�Þ� ~Gn�ð�Þ

�
. . .c ð�Þ

þU½n�
½1;��

�
� ~Gn�ð�Þ

�
iD�

T ð�Þ �A�
T ð�Þ

��
. . .c ð�Þ þU½n�

½1;��

��
iD�

T ð�Þ �A�
T ð�Þ

�
� ~Gn�ð�Þ

�
. . .c ð�Þ:

(A5)

After integration over pT the resulting correlators can be rewritten in terms of color gauge-invariant multiparton correlators
as was done for the single weighting. In this case one needs the correlators of the form

���
O1O2

ðx� x1 � x2; x1; x2jxÞ ¼
Z d� � P

2�

d
 � P
2�

d
0 � P
2�

eix2ð
0�PÞeix1ð
�PÞeiðx�x1�x2Þð��PÞ

� hP; Sj �c ð0ÞU½n�
½0;
0�O

�
1Tð
0ÞU½n�

½
0;
�O
�
2Tð
ÞU½n�

½
;��c ð�ÞjP; SicLC; (A6)

with O�
1T and O�

2T Hermitian operators like iD�
T and/or Fn�

T . In general more than one color structure is possible. As an
example, for the operator combination �cFFc , one can have the two distinct color configurations,
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c ¼ 1: Trc½FFc �c � ¼ �cFFc ¼ �c rFrs0Fs0sc s; (A7)

c ¼ 2: Trc½FF�Trc½c �c � ¼ �c cTrc½FF� ¼ �c rc rFss0Fs0s:

(A8)

An example of a correlator one needs is

���
DDðxÞ ¼

Z d� � P
2�

eixð��PÞ

� hP; Sj �c ð0ÞU½n�
½0;��iD

�
T ð�ÞiD�

T ð�Þc ð�ÞjP; SicLC
¼

Z
dx1dx2�

��
DDðx� x1 � x2; x1; x2jxÞ: (A9)

Other correlators involving A�
T ð�Þ or � ~Gn�

T ð�Þ, given in
Eqs. (A3) and (A4), are given by

���
AA ðxÞ¼

Z
dx1PV

i

x1

Z
dx2PV

i

x2
���

FFðx�x1�x2;x1;x2jxÞ;
(A10)

���
ADðxÞ¼

Z
dx1dx2PV

i

x1
���

FDðx�x1�x2;x1;x2jxÞ;
(A11)

���
DAðxÞ¼

Z
dx1dx2PV

i

x2
���

DFðx�x1�x2;x1;x2jxÞ;
(A12)

���
GDðxÞ¼

Z
dx2�

��
FDðx�x2;0;x2jxÞ; (A13)

���
DGðxÞ¼

Z
dx1�

��
DFðx�x1;x1;0jxÞ; (A14)

���
GAðxÞ ¼

Z
dx2PV

i

x2
���

FFðx� x2; 0; x2jxÞ; (A15)

���
AGðxÞ ¼

Z
dx1PV

i

x1
���

FFðx� x1; x1; 0jxÞ; (A16)

���
GG;cðxÞ¼���

FF;cðx;0;0jxÞ: (A17)

Using for the correlators, just as for the single weighted
case, the notation ~�@... for the correlators with covariant
derivative minus a correlator with a principal value inte-
gration (iDT � AT), implies

~���
@@ ðxÞ¼���

DDðxÞ����
DAðxÞ����

ADðxÞþ���
AA ðxÞ; (A18)

~���
@G ðxÞ¼���

DGðxÞ����
AGðxÞ; (A19)

~���
G@ ðxÞ¼���

GDðxÞ����
GAðxÞ: (A20)

The second transverse moment in terms of the collinear
functions then is (symmetrizing in � and �)

Z
d2pTp

f�
T p�g

T �½þ�ðx; pTÞ

¼ ~�f��g
@@ ðxÞ þ � ~�f��g

@G ðxÞ þ � ~�f��g
G@ ðxÞ þ �2�f��g

GG;1ðxÞ;
(A21)

which is the result given in Eq. (17) with C½þ�
G ¼ 1,

C½þ�
GG;1 ¼ 1 and C½þ�

GG;2 ¼ 0. For other gauge link structures,
similar calculations can be performed.

APPENDIX B: DOUBLE WEIGHTED
TRANSVERSE MOMENTUM

DEPENDENT MATRIX ELEMENTS

The leading relevant TMD operator structure for our
considerations referred to in Eq. (19) is bilocal,

�½U�ðx; pT ;nÞ ¼
Z d� � Pd2�T

ð2�Þ3 eip��

� hPj �c ð0ÞU½0;��Oð�ÞjPij��n¼0: (B1)

The nonlocality, however, involves a transverse separation,
hence the gauge link U½0;�� in general can be complicated.

For the two cases c ¼ 1, 2 one now finds for the gauge link

U½ðhÞþ�
½0;�� the nonlocal structures

c ¼ 1: Trc½U½ðhÞþ�
½0;�� ~Gð�Þ ~Gð�Þc ð�Þ �c ð0Þ� ¼ �c ð0ÞU½ðhÞþ�

½0;�� ~Gð�Þ ~Gð�Þc ð�Þ; (B2)

c ¼ 2: Trc½U½h�
½0;�� ~Gð�Þ ~Gð�Þ�Trc½U½þ�

½0;��c ð�Þ �c ð0Þ� ¼ �c ð0ÞU½þ�
½0;��c ð�ÞTrc½U½þ�

½0;�� ~Gð�Þ ~Gð�ÞU½��y
½�;0� �: (B3)

APPENDIX C: PARAMETRIZATION OF THE SPIN 1 DISTRIBUTION CORRELATOR

The parametrization of a distribution correlator for a spin 1 hadron was first given in Ref. [25] and is given by

�ðx; pTÞ ¼ �Uðx; pTÞ þ�Lðx; pTÞ þ�Tðx; pTÞ þ�LLðx; pTÞ þ�LTðx; pTÞ þ�TTðx; pTÞ; (C1)
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where the contributions �Uðx; pTÞ, �Lðx; pTÞ and
�Tðx; pTÞ are parametrized in the same way as those
contributions in the correlators that describe an unpolar-
ized, longitudinally or transversely polarized spin 1=2 par-
ticle, given in Eq. (3) using the notation of Ref. [24]. We
update the parametrization for the remaining correlators
contributing for spin 1 particles, using the same TMD
PDFs as in Ref. [25]. This leads for the leading twist
TMDs to

�LLðx; pTÞ

¼
�
f1LLðx; p2

TÞSLL þ ih?1LLðx; p2
TÞSLL

6pT

M

� 6P
2
; (C2)

�LTðx;pTÞ
¼

�
�f1LTðx;p2

TÞ
pT � SLT

M
þ g1LTðx;p2

TÞ���
T SLT�

pT�

M
	5

þ h01LTðx;p2
TÞ	5	��

��
T SLT�

� ih?1LTðx;p2
TÞ
pT � SLT

M

6pT

M

� 6P
2
; (C3)

�TTðx;pTÞ

¼
�
f1TTðx;p2

TÞ
pT��S

��
TT

M2
�g1TTðx;p2

TÞ���
T STT��

p�
TpT�

M2
	5

�h01TTðx;p2
TÞ	5	��

��
T STT��

p�
T

M

þih?1TTðx;p2
TÞ
pT��S

��
TT

M2

6pT

M

� 6P
2
: (C4)

We note that all polarized quark distributions (g and h
functions) in a tensor polarized target, h?1LL, g1LT , h01LT ,
h?1LT , g1TT , h01TT and h?1TT , are T-odd. Just as in Ref. [25],
the integrated case is given by

�LLðxÞ¼f1LLðxÞSLL 6P2 ; (C5)

�LTðxÞ¼h1LTðxÞ	��
��
T SLT�

6P
2
; (C6)

�TTðxÞ¼0; (C7)

where

h1LTðx; p2
TÞ ¼ h01LTðx; p2

TÞ þ h?ð1Þ
1LT ðx; p2

TÞ: (C8)

For identifying the proper rank one TMD, it is also useful
to define

h1TTðx; p2
TÞ ¼ h01TTðx; p2

TÞ þ h?ð1Þ
1TT ðx; p2

TÞ: (C9)

APPENDIX D: PARAMETRIZATION OF THE
FRAGMENTATION CORRELATOR

The parametrization of the fragmentation correlator for
a spin 1 particle, also first used in Ref. [25], is similar in

structure to the parametrization of the distribution correla-
tor and is given by

�ðz; kTÞ ¼ �Uðz; kTÞ þ�Lðz; kTÞ þ�Tðz; kTÞ þ�LLðz; kTÞ
þ�LTðz; kTÞ þ�TTðz; kTÞ; (D1)

where the �Uðz; kTÞ, �Lðz; kTÞ and �Tðz; kTÞ are the cor-
relators that describe fragmentation into an unpolarized,
longitudinally and transversely polarized spin 1=2 particle.
For spin 0 only �Uðz; kTÞ is relevant. The correlators in
Eq. (D1) are with the notation of Ref. [24] at leading twist
given by

�Uðz;kTÞ¼
�
D1ðz;k2TÞþ iH?

1 ðz;k2TÞ
6kT
Mh

� 6K
2
; (D2)

�Lðz;kTÞ¼
�
G1Lðz;k2TÞShL	5þH?

1Lðz;k2TÞShL
	5 6kT
Mh

� 6K
2
;

(D3)

�Tðz;kTÞ¼
�
�G1Tðz;k2TÞ

kT �ShT
Mh

	5þH1Tðz;k2TÞ	5ShT

�H?
1Tðz;k2TÞ

kT �ShT
Mh

	56kT
Mh

þD?
1Tðz;k2TÞ

�
��
T kT�ShT�

Mh

� 6K
2
; (D4)

�LLðz;kTÞ¼
�
D1LLðz;k2TÞShLLþ iH?

1LLðz;k2TÞShLL
6kT
Mh

� 6K
2
;

(D5)

�LTðz;kTÞ¼
�
�D1LTðz;k2TÞ

kT �ShLT
Mh

�G1LTðz;k2TÞ���
T ShLT�

kT�
Mh

	5

�H0
1LTðz;k2TÞ	5	��

��
T ShLT�

� iH?
1LTðz;k2TÞ

kT �ShLT
Mh

6kT
Mh

� 6K
2
; (D6)

�TTðz; kTÞ ¼
�
D1TTðz; k2TÞ

kT��S
��
hTT

M2
h

þG1TTðz; k2TÞ���
T ShTT��

k�TkT�

M2
h

	5

þH0
1TTðz; k2TÞ	5	��

��
T ShTT��

k�T
Mh

þ iH?
1TTðz; k2TÞ

kT��S
��
hTT

M2
h

6kT
Mh

� 6K
2
; (D7)

where D?
1T , H

?
1 , H

?
1LL, G1LT , H

0
1LT , H

?
1LT , G1TT , H

0
1TT and

H?
1TT are T-odd. The relative sign difference between
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certain corresponding TMD PDF and TMD PFF contribu-

tions comes from the definition ���T ¼ �����nþ�n��,

where interchanging nþ and n� gives a relative minus
sign [24]. The TMD PFFs G1ðz; k2TÞ, H1ðz; k2TÞ,
H1LTðz; k2TÞ and H1TTðz; k2TÞ are defined in the same way

as their TMD PDF counterparts, whereas integrated TMD
PFFs are defined as

D...ðzÞ ¼ z2
Z

d2kTD...ðz; k2TÞ: (D8)
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