13 research outputs found

    Hypoxia regulates FGFR3 expression via HIF-1α and miR-100 and contributes to cell survival in non-muscle invasive bladder cancer

    Get PDF
    Background: Non-muscle invasive (NMI) bladder cancer is characterised by increased expression and activating mutations of FGFR3. We have previously investigated the role of microRNAs in bladder cancer and have shown that FGFR3 is a target of miR-100. In this study, we investigated the effects of hypoxia on miR-100 and FGFR3 expression, and the link between miR-100 and FGFR3 in hypoxia. Methods: Bladder cancer cell lines were exposed to normoxic or hypoxic conditions and examined for the expression of FGFR3 by quantitative PCR (qPCR) and western blotting, and miR-100 by qPCR. The effect of FGFR3 and miR-100 on cell viability in twodimensional (2-D) and three-dimensional (3-D) was examined by transfecting siRNA or mimic-100, respectively. Results: In NMI bladder cancer cell lines, FGFR3 expression was induced by hypoxia in a transcriptional and HIF-1a-dependent manner. Increased FGFR3 was also in part dependent on miR-100 levels, which decreased in hypoxia. Knockdown of FGFR3 led to a decrease in phosphorylation of the downstream kinases mitogen-activated protein kinase (MAPK) and protein kinase B (PKB), which was more pronounced under hypoxic conditions. Furthermore, transfection of mimic-100 also decreased phosphorylation of MAPK and PKB. Finally, knocking down FGFR3 profoundly decreased 2-D and 3-D cell growth, whereas introduction of mimic-100 decreased 3-D growth of cells. Conclusion: Hypoxia, in part via suppression of miR-100, induces FGFR3 expression in bladder cancer, both of which have an important role in maintaining cell viability under conditions of stress

    Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    Get PDF
    Contains fulltext : 153027.pdf (publisher's version ) (Open Access)Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage-induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain-containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors

    A model-based method for the prediction of whole body absorbed dose and bone marrow toxicity for <sup>186</sup>Re-HEDP treatment of skeletal metastases from prostate cancer

    No full text
    In high-activity rhenium-186 hydroxyethylidene diphosphonate ((186)Re-HEDP) treatment of bone metastatic disease from prostate cancer the dose-limiting factor is haematological toxicity. In this study, we examined the correlation of the injected activity and the whole-body absorbed dose with treatment toxicity and response. Since the best response is likely to be related to the maximum possible injected activity limited by the whole-body absorbed dose, the relationship between pre-therapy biochemical and physiological parameters and the whole-body absorbed dose was studied to derive an algorithm to predict the whole-body absorbed dose prior to injection of the radionuclide. The whole-body retention of radioactivity was measured at several time points after injection in a cohort of patients receiving activities ranging between 2,468 MBq and 5,497 MBq. The whole-body absorbed dose was calculated by fitting a sequential series of exponential phases to the whole-body time-activity data and by integrating this fit over time to obtain the whole-body cumulated activity. This was then converted to absorbed dose using the Medical Internal Radiation Dose (MIRD) committee methodology. Treatment toxicity was estimated by the relative decrease in white cell (WC) and platelet (Plt) counts after the injection of the radionuclide, and by their absolute nadir values. The criterion for a treatment response was a 50% or greater decrease in prostate-specific antigen (PSA) value lasting for 4 weeks. Alkaline phosphatase (AlkPh), chromium-51 ethylene diamine tetra-acetate ((51)Cr-EDTA) clearance rate and weight were measured before injection of the radionuclide. The whole-body absorbed dose showed a significant correlation with WC and Plt toxicity ( P=0.005 and 0.003 for the relative decrease and P=0.006 and 0.003 for the nadir values of WC and Plt counts respectively) in a multivariate analysis which included injected activity, whole-body absorbed dose, pre-treatment WC and Plt baseline counts, PSA and AlkPh values, and the pre-treatment Soloway score. The injected activity did not show any correlation with WC or Plt toxicity, but it did correlate with PSA response ( P=0.005). These results suggest that the administration of higher activities would be likely to generate a better response, but that the quantity of activity that can be administered is limited by the whole-body absorbed dose. We have derived and evaluated a model that estimates the whole-body absorbed dose on an individual patient basis prior to injection. This model uses the level of injected activity and pre-injection measurements of AlkPh, weight and (51)Cr-EDTA clearance. It gave good estimates of the whole-body absorbed dose, with an average difference between predicted and measured values of 15%. Furthermore, the whole-body absorbed dose predicted using this algorithm correlated with treatment toxicity. It could therefore be used to administer levels of activity on a patient-specific basis, which would help in the optimisation of targeted radionuclide therapy. We believe that algorithms of this kind, which use pre-injection biochemical and physiological measurements, could assist in the design of escalation trials based on a toxicity-limiting whole-body absorbed dose, rather than using the more conventional activity escalation approach

    The ACGT Oncosimulator: from conceptualization to development via multiscale cancer modeling

    No full text
    This short paper provides a brief outline of the main components and the developmental and translational process of the ACGT Oncosimulator. The Oncosimulator is an integrated software system simulating in vivo tumor response to therapeutic modalities within the clinical trial environment. It aims at supporting patient individualized optimization of cancer treatment

    The clinico-pathologic role of microRNAs miR-9 and miR-151-5p in breast cancer metastasis

    No full text
    BACKGROUND MicroRNAs (miRNAs) may function as suppressors or promoters of tumor metastasis according to their messenger RNA targets. Previous studies have suggested that miR-9 and miR-151-5p are associated with metastasis in breast cancer and hepatocellular carcinoma, respectively. We aimed to further establish the potential roles of miR-9 and miR-151-5p in tumor invasion and metastasis and investigate their use as biomarkers. METHODS We used quantitative real-time PCR (qRT-PCR) to measure differences in miR-9 and miR-151-5p expression between primary breast tumors and their lymph-node metastases in 194 paired tumor samples from 97 patients. We also correlated expression levels with histologic data to investigate their utility as biomarkers. RESULTS There were no significant differences in miR-9 expression between the primary tumors and lymph nodes; however, miR-151-5p expression was significantly lower in the lymph-node metastases than in their corresponding tumors (p < 0.05). miR-9 levels were elevated in primary breast tumors from patients diagnosed with higher-grade tumors (p < 0.05); however, no differences were observed in miR-151-5p levels between different grades of tumor. Interestingly, miR-9 levels were elevated in invasive lobular carcinomas (ILC) compared with invasive ductal carcinomas (IDC; p < 0.01). CONCLUSIONS In aggregate, these data suggest that miR-151-5p upregulation may suppress metastasis in primary breast tumors. Both miRNAs may serve as useful biomarkers in future clinical trials in breast cancer
    corecore