35 research outputs found
Advantages and disadvantages of different nasal CPAP systems in newborns
Objective: To compare three different systems of continuous positive airway pressure (CPAP): the naso-pharyngeal tube and two-prong systems in newborns, focusing on duration of CPAP, side effects and cost. Design: Randomized clinical study. Patients: Between July 2000 and September 2001 newborns were randomized to three different CPAP systems. Forty infants in two weight groups (>2500g and 1250-2500g; 20 patients in each group) were included. Results: In the group >2500g the median duration of CPAP was 1.1days (range 0.25-14.3days). The median time on a naso-pharyngeal CPAP was 1day (range 0.25-14.3days), on Hudson prongs 1.6days (range 0.5-3.3days) and on the Infant Flow system 0.7days (range 0.3-13.6days; p>0.05 for comparison between groups, Fisher's exact test). With naso-pharyngeal CPAP, 2 patients developed moderate nasal injuries. On Hudson, 2 patients developed moderate and three mild nasal injuries. One patient on the Infant Flow showed mild and one moderate nasal injuries. In the weight group 1250-2500g the median duration of CPAP was 1.1days (range 0.1-7.0days). The median time on the naso-pharyngeal tube was 0.9days (range 0.1-7days), on Hudson prongs 1.1days (range 0.7-6.6days) and on the Infant Flow system 1.3days (range 0.25-5.9days; p>0.05 for comparison between groups, Fisher's exact test). With a naso-pharygeal tube, one infant developed mild and one moderate nasal injuries. On Hudson prongs, two had moderate nasal injuries. On Infant Flow, one newborn showed a severe nasal injury and two mild injuries. None of the patients developed a pneumothorax. Conclusion: The naso-pharyngeal tube is an easy, safe and economical CPAP system usable with every common ventilator. For very low birth weight newborns, a prong system may have advantage
Dispersive representation of the scalar and vector Kpi form factors for tau --> K pi nu_tau and K_{l3} decays
Recently, the tau --> K pi nu_tau decay spectrum has been measured by the
Belle and BaBar collaborations. In this work, we present an analysis of such
decays introducing a dispersive parametrization for the vector and scalar Kpi
form factors. This allows for precise tests of the Standard Model. For
instance, the determination of f_+(0)|V_{us}| from these decays is discussed. A
comparison and a combination of these results with the analyses of the K_{l3}
decays is also considered.Comment: 6 pages, 1 figure. Talk given at 11th International Workshop on Tau
Lepton Physics, Manchester, UK, 13-17 September 201
Chiral Extrapolation of the Strangeness Changing K pi Form Factor
We perform a chiral extrapolation of lattice data on the scalar K pi form
factor and the ratio of the kaon and pion decay constants within Chiral
Perturbation Theory to two loops. We determine the value of the scalar form
factor at zero momentum transfer, at the Callan-Treiman point and at its soft
kaon analog as well as its slope. Results are in good agreement with their
determination from experiment using the standard couplings of quarks to the W
boson. The slope is however rather large. A study of the convergence of the
chiral expansion is also performed.Comment: few minor change
Non-Abelian Geometric Phases and Conductance of Spin-3/2 Holes
Angular momentum holes in semiconductor heterostructures are showed
to accumulate nonabelian geometric phases as a consequence of their motion. We
provide a general framework for analyzing such a system and compute conductance
oscillations for a simple ring geometry. We also analyze a figure-8 geometry
which captures intrinsically nonabelian interference effects.Comment: 4 pages, 3 figures (encapsulated PostScript) Replaced fig. 1 and fig.
Scattering in Three Flavour ChPT
We present the scattering lengths for the processes in the three
flavour Chiral Perturbation Theory (ChPT) framework at next-to-next-to-leading
order (NNLO). The calculation has been performed analytically but we only
include analytical results for the dependence on the low-energy constants
(LECs) at NNLO due to the size of the expressions. These results, together with
resonance estimates of the NNLO LECs are used to obtain constraints on the
Zweig rule suppressed LECs at NLO, and . Contrary to
expectations from NLO order calculations we find them to be compatible with
zero. We do a preliminary study of combining the results from
scattering, scattering and the scalar form-factors and find only a
marginal compatibility with all experimental/dispersive input data.Comment: 23 page
Theory of unitarity bounds and low energy form factors
We present a general formalism for deriving bounds on the shape parameters of
the weak and electromagnetic form factors using as input correlators calculated
from perturbative QCD, and exploiting analyticity and unitarity. The values
resulting from the symmetries of QCD at low energies or from lattice
calculations at special points inside the analyticity domain can beincluded in
an exact way. We write down the general solution of the corresponding Meiman
problem for an arbitrary number of interior constraints and the integral
equations that allow one to include the phase of the form factor along a part
of the unitarity cut. A formalism that includes the phase and some information
on the modulus along a part of the cut is also given. For illustration we
present constraints on the slope and curvature of the K_l3 scalar form factor
and discuss our findings in some detail. The techniques are useful for checking
the consistency of various inputs and for controlling the parameterizations of
the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version
accepted by EPJA in Tools section; sentences and figures improve
Berry's phase and Quantum Dynamics of Ferromagnetic Solitons
We study spin parity effects and the quantum propagation of solitons (Bloch
walls) in quasi-one dimensional ferromagnets. Within a coherent state path
integral approach we derive a quantum field theory for nonuniform spin
configurations. The effective action for the soliton position is shown to
contain a gauge potential due to the Berry phase and a damping term caused by
the interaction between soliton and spin waves. For temperatures below the
anisotropy gap this dissipation reduces to a pure soliton mass renormalization.
The gauge potential strongly affects the quantum dynamics of the soliton in a
periodic lattice or pinning potential. For half-integer spin, destructive
interference between soliton states of opposite chirality suppresses nearest
neighbor hopping. Thus the Brillouin zone is halved, and for small mixing of
the chiralities the dispersion reveals a surprising dynamical correlation: Two
subsequent band minima belong to different chirality states of the soliton. For
integer spin, the Berry phase is inoperative and a simple tight-binding
dispersion is obtained. Finally it is shown that external fields can be used to
interpolate continuously between the Bloch wall dispersions for half-integer
and integer spin.Comment: 20 pages, RevTex 3.0 (twocolumn), to appear in Phys. Rev. B 53, 3237
(1996), 4 PS figures available upon reques
Relations at Order in Chiral Perturbation Theory
We report on a search of relations valid at order in Chiral
Perturbation Theory. We have found relations between ,
scattering, decays, masses and decay constants and scalar and
vector form factors. In this paper we give the relations and a first numerical
check of them.Comment: 18 pages, numerical discussion extended including a new figur
The Society for Pediatric Anesthesia recommendations for the use of opioids in children during the perioperative period
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149726/1/pan13639_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149726/2/pan13639.pd