115 research outputs found
Experimental Bariatric Surgery in Rats Generates a Cytotoxic Chemical Environment in the Gut Contents
Bariatric surgery, also known as metabolic surgery, is an effective treatment for morbid obesity, which also offers pronounced metabolic effects including the resolution of type 2 diabetes and a decrease in cardiovascular disease and long-term cancer risk. However, the mechanisms of surgical weight loss and the long-term consequences of bariatric surgery remain unclear. Bariatric surgery has been demonstrated to alter the composition of both the microbiome and the metabolic phenotype. We observed a marked shift toward Gammaproteobacteria, particularly Enterobacter hormaechei, following Roux-en-Y gastric bypass (RYGB) surgery in a rat model compared with sham-operated controls. Fecal water from RYGB surgery rats was highly cytotoxic to rodent cells (mouse lymphoma cell line). In contrast, fecal water from sham-operated animals showed no/very low cytotoxicity. This shift in the gross structure of the microbiome correlated with greatly increased cytotoxicity. Urinary phenylacetylglycine and indoxyl sulfate and fecal gamma-aminobutyric acid, putrescine, tyramine, and uracil were found to be inversely correlated with cell survival rate. This profound co-dependent response of mammalian and microbial metabolism to RYGB surgery and the impact on the cytotoxicity of the gut luminal environment suggests that RYGB exerts local and global metabolic effects which may have an influence on long-term cancer risk and cytotoxic load
Increased energy expenditure in gastric bypass rats is not caused by activated brown adipose tissue
OBJECTIVE: To investigate whether gastric bypass induces a higher activity of brown adipose tissue and greater levels of the brown adipose tissue-specific protein uncoupling protein-1 (UCP-1) in rats.
METHODS: Gastric bypass rats and sham-operated controls (each n = 8) underwent whole body (1)H-MR spectroscopy for analysis of body composition and (18)F-fluorodeoxyglucose positron emission tomography combined with computed tomography ((18)F-FDG PET/CT) imaging for measurement of the metabolic activity of brown adipose tissue. Brown adipose tissue was harvested and weighed, and UCP-1 mRNA content was measured by Northern Blot technique.
RESULTS: Gastric bypass rats had a significantly lower percentage of whole body adipose tissue mass compared to sham-operated rats (p = 0.001). There was no difference in brown adipose tissue activity between the two groups (standardised uptake value sham 2.81 ± 0.58 vs. bypass 2.56 ± 0.46 ; p = 0.73). Furthermore, there was no difference in the UCP-1 mRNA content of brown adipose tissue between the two groups (sham 49.5 ± 13.2 vs. bypass 43.7 ± 13.1; p = 0.77).
CONCLUSION: Gastric bypass does not increase the activity of brown adipose tissue in rats suggesting that other mechanisms are involved to explain the increased energy expenditure after bypass surgery. Our results cannot justify the radiation dose of (18)F-FDG PET/CT studies in humans to determine potential changes in brown adipose tissue after gastric bypass surgery
Preterm Delivery Disrupts the Developmental Program of the Cerebellum
A rapid growth in human cerebellar development occurs in the third trimester, which is impeded by preterm delivery. The goal of this study was to characterize the impact of preterm delivery on the developmental program of the human cerebellum. Still born infants, which meant that all development up to that age had taken place in-utero, were age paired with preterm delivery infants, who had survived in an ex-utero environment, which meant that their development had also taken place outside the uterus. The two groups were assessed on quantitative measures that included molecular markers of granule neuron, purkinje neuron and bergmann glia differentiation, as well as the expression of the sonic hedgehog signaling pathway, that is important for cerebellar growth. We report that premature birth and development in an ex-utero environment leads to a significant decrease in the thickness and an increase in the packing density of the cells within the external granular layer and the inner granular layer well, as a reduction in the density of bergmann glial fibres. In addition, this also leads to a reduced expression of sonic hedgehog in the purkinje layer. We conclude that the developmental program of the cerebellum is specifically modified by events that follow preterm delivery
Can medical therapy mimic the clinical efficacy or physiological effects of bariatric surgery?
The number of bariatric surgical procedures performed has increased dramatically. This review discusses the clinical and physiological changes, and in particular, the mechanisms behind weight loss and glycaemic improvements, observed following the gastric bypass, sleeve gastrectomy and gastric banding bariatric procedures. The review then examines how close we are to mimicking the clinical or physiological effects of surgery through less invasive and safer modern interventions that are currently available for clinical use. These include dietary interventions, orlistat, lorcaserin, phentermine/topiramate, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, pramlintide, dapagliflozin, the duodenal–jejunal bypass liner, gastric pacemakers and gastric balloons. We conclude that, based on the most recent trials, we cannot fully mimic the clinical or physiological effects of surgery; however, we are getting closer. A ‘medical bypass' may not be as far in the future as we previously thought, as the physician's armamentarium against obesity and type 2 diabetes has recently got stronger through the use of specific dietary modifications, novel medical devices and pharmacotherapy. Novel therapeutic targets include not only appetite but also taste/food preferences, energy expenditure, gut microbiota, bile acid signalling, inflammation, preservation of β-cell function and hepatic glucose output, among others. Although there are no magic bullets, an integrated multimodal approach may yield success. Non-surgical interventions that mimic the metabolic benefits of bariatric surgery, with a reduced morbidity and mortality burden, remain tenable alternatives for patients and health-care professionals
Proteomic characterization of HIV-modulated membrane receptors, kinases and signaling proteins involved in novel angiogenic pathways
<p>Abstract</p> <p>Background</p> <p>Kaposi's sarcoma (KS), hemangioma, and other angioproliferative diseases are highly prevalent in HIV-infected individuals. While KS is etiologically linked to the human herpesvirus-8 (HHV8) infection, HIV-patients without HHV-8 and those infected with unrelated viruses also develop angiopathies. Further, HIV-Tat can activate protein-tyrosine-kinase (PTK-activity) of the vascular endothelial growth factor receptor involved in stimulating angiogenic processes. However, Tat by itself or HHV8-genes alone cannot induce angiogenesis <it>in vivo </it>unless specific proteins/enzymes are produced synchronously by different cell-types. We therefore tested a hypothesis that <it>chronic </it>HIV-<it>replication in non-endothelial cells </it>may produce novel factors that provoke angiogenic pathways.</p> <p>Methods</p> <p>Genome-wide proteins from HIV-infected and uninfected T-lymphocytes were tested by subtractive proteomics analyses at various stages of virus and cell growth <it>in vitro </it>over a period of two years. Several thousand differentially regulated proteins were identified by mass spectrometry (MS) and >200 proteins were confirmed in multiple gels. Each protein was scrutinized extensively by protein-interaction-pathways, bioinformatics, and statistical analyses.</p> <p>Results</p> <p>By functional categorization, 31 proteins were identified to be associated with various signaling events involved in angiogenesis. 88% proteins were located in the plasma membrane or extracellular matrix and >90% were found to be essential for regeneration, neovascularization and angiogenic processes during embryonic development.</p> <p>Conclusion</p> <p>Chronic HIV-infection of T-cells produces membrane receptor-PTKs, serine-threonine kinases, growth factors, adhesion molecules and many diffusible signaling proteins that have not been previously reported in HIV-infected cells. Each protein has been associated with endothelial cell-growth, morphogenesis, sprouting, microvessel-formation and other biological processes involved in angiogenesis (p = 10<sup>-4 </sup>to 10<sup>-12</sup>). Bioinformatics analyses suggest that overproduction of PTKs and other kinases in HIV-infected cells has <it>suppressed </it>VEGF/VEGFR-PTK expression and promoted <it>VEGFR-independent </it>pathways. This unique mechanism is similar to that observed in neovascularization and angiogenesis during embryogenesis. Validation of clinically relevant proteins by gene-silencing and translational studies <it>in vivo </it>would identify specific targets that can be used for early diagnosis of angiogenic disorders and future development of inhibitors of angiopathies. This is the first comprehensive study to demonstrate that HIV-infection alone, without any co-infection or treatment, can induce numerous "embryonic" proteins and kinases capable of generating novel <it>VEGF-independent </it>angiogenic pathways.</p
Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis
Non-alcoholic steatohepatitis (NASH), a primary cause of liver disease, leads to complications such as fibrosis, cirrhosis, and carcinoma, but the pathophysiology of NASH is incompletely understood. Epstein Barr virus induced G protein coupled receptor 2 (EBI2) and its oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-diHC) are recently discovered immune regulators. Several lines of evidence suggest a role of oxysterols in NASH pathogenesis, but rigorous testing has not been performed. We measured oxysterol levels in livers of NASH patients by liquid chromatography-mass spectrometry and tested the role of the EBI2-7α,25-diHC-system in a murine feeding model of NASH. Free oxysterol profiling in livers from NASH patients revealed a pronounced increase in 24- and 7-hydroxylated oxysterols in NASH compared to controls. Levels of 24- and 7-hydroxylated oxysterols correlated with histological NASH activity. Histological analysis of murine liver samples demonstrated ballooning and liver inflammation. No significant genotype related differences were observed in Ebi2-/- animals and animals with defects in the 7α,25-diHC synthesizing enzymes CH25H and CYP7B1 compared to wildtype littermate controls,arguing against an essential role of these genes in NASH pathogenesis. Elevated 24- and 7-hydroxylated oxysterol levels were confirmed in murine NASH liver samples. Our results suggest increased bile acid synthesis in NASH samples, as judged by enhanced level of 7α- hydroxycholest-4-en-3-one, and impaired 24S-hydroxycholesterol metabolism as characteristic biochemical changes in livers affected by NASH
The physiology of altered eating behaviour after Roux-en-Y gastric bypass
Obesity and its related comorbidities can be detrimental for the affected individual, as well as constituting a major challenge to public health systems worldwide. Currently, the most effective treatment option leading to clinically significant and maintained body weight loss and reduction in obesity-related morbidity and mortality is obesity surgery, which is recommended for patients with a body mass index of >40 kg m(-2), or >35 kg m(-2) if obesity-associated comorbidities, such as type 2 diabetes mellitus, are present. This report focuses on the altered eating behaviour after the most common of these operations, the Roux-en-Y gastric bypass. Animal and human experiments designed to understand the underlying physiological mechanisms of altered taste and appetite are discussed
- …